Univerzita Jana Evangelisty Purkyně
v Ústí nad Labem

Fakulta životního prostředí

REVITALIZACE ANTPROPENNÉ POSTIŽENÉ KRAJINY
V PODKRUŠNOHORÍ

I. část

Přírodní a sociálně ekonomické charakteristiky
disparit průmyslové krajiny v Podkrušnohoří

Autorský kolektiv:
 Prof. Ing. Jaroslava Vráblíková, CSc.
 Doc. RNDr. Miroslava Blažková, PhD.
 Doc. Ing. Miroslav Farský, CSc.
 Doc. RNDr. Milan Jeřábek, PhD.
 Prof. Ing. Miloslav Šoch, CSc.
 Ing. Ivan Dejmal
 RNDr. Petr Jirásek
 Ing. Martin Neruda, PhD.,
 Ing. Jaroslav Zahálka, CSc.

Ústí nad Labem 2008
Název: REVITALIZACE ANTROPOGENNĚ POSTIŽENÉ KRAJINY V PODKRUŠNOHOŘÍ

I. část Přírodní a sociálně ekonomické charakteristiky disparit průmyslové krajiny v Podkrušnohoří

Autorský kolektiv:

Prof. Ing. Jaroslava Vrábliková, CSc.

Doc. RNDr. Miroslava Blažková, PhD.

Doc. Ing. Miroslav Farský, CSc.

Doc. RNDr. Milan Jeřábek, PhD.

Doc. Ing. Josef Sejáček, CSc.

Prof. Ing. Miloslav Šoch, CSc.

Ing. Ivan Dejmal

RNDr. Petr Jirášek

Ing. Martin Neruda, PhD.,

Ing. Jaroslav Zahálka, CSc.

Vědecký redaktor: prof. RNDr. Olga Kontrišová, CSc.

Podpořeno projektem Ministerstva pro místní rozvoj ČR WD-44-07-1
"Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří"

© Fakulta životního prostředí UJEP Ústí nad Labem 2008

Autoři:
1 Teoretické přístupy k řešení regionálních disparit
2 Stručná charakteristika přírodních podmínek antropogenně postižené Chomutovsko – ústecké oblasti
Doc. RNDr. M. Jeřábek, Ph.D., Prof. Ing. J. Vráblíková, CSc., RNDr. P. Jirásek
3 Studium faktorů narušení horninového prostředí zatížené oblasti Podkrušnohoří v okresech Chomutov, Most, Teplice a Ústí nad Labem.
Doc. RNDr. M. Blažková, Ph.D.
4 Zpracování analýzy půdního fondu v modelové oblasti
Prof. Ing. J. Vráblíková, CSc., Prof. Ing. M. Šoch, CSc.
5 Vodní režimy krajiny V SEVERNÍCH ČECHÁCH
Ing. M. Neruda, PhD.
6 Analýza dlouhodobých antropogenních vlivů na ekosystémy modelových pánevních okresů
Doc. Ing. J. Seják, CSc.
7 Socioekonomická charakteristika modelového území
Doc. RNDr. Milan Jeřábek, Ph.D., Ing. Ivan Dejmal, RNDr. Petr Jirásek
8 Disparity v modelové oblasti
Doc. Ing. Miroslav Farský, CSc.
Obsah
Úvod... 4
Cíl .. 5
Metodika ... 6
1 Teoretické přístupy k řešení regionálních disparit .. 8
 1.1 Stručný historický exkurs teorii lokace výroby ... 9
 1.2 Přehled regionálních disparit .. 14
 1.3 Regionální politika – aktivní nástroj prostorové ekonomie .. 17
2 Stručná charakteristika přírodních podmínek Podkrušnohoří .. 22
 2.1 Rozloha řešeného území ... 22
 2.2 Přírodní podmínky .. 22
3 Studium faktorů narušení horninového prostředí zatížené oblasti
 Podkrušnohoří .. 33
 3.1 Úvod .. 33
 3.2 Cíle a metodika ... 34
 3.3 Základní geologická charakteristika zkoumaného území ... 34
 3.4 3. Indikátory kvality horninového prostředí ... 35
 3.5 Disparity horninového prostředí v Podkrušnohoří ... 36
4 Analýza předního fondu v modelové oblasti ... 50
 4.1 Zhodnocení předního fondu ve severních Čechách .. 50
 4.2 Kvalita předního fondu ... 67
 4.3 Zhodnocení lesního předního fondu v zájmové oblasti i v České republice 73
 4.4 Zhodnocení rekultivace v zájmové oblasti .. 78
 4.5 Využití půd zemědělstvím - stručné zhodnocení vybraných problémů zemědělství v zájmové
 oblasti a v ČR .. 81
 4.6 Problematika disparit v oblasti předního fondu ... 83
 4.7 Závěr .. 87
5 Vodní režimy krajiny v severních Čechách .. 89
 5.1 Hydrologicko-ekologická charakteristika vodního režimu zájmové oblasti s důrazem na
 nově vznikající jezera ... 89
 5.2 Shrouni .. 105
 5.3 Disparity vodního režimu severních Čech - identifikace klíčových faktorů a jejich analýza .. 108
6 Analýza dlouhodobých antropogenních vlivů na ekosystémy modelových
 páněních okrůz .. 111
 6.1 Popis modelového území .. 111
 6.2 Přírodní potenciál hodnoty ekosystémů modelového území ... 112
 6.3 Analýza disparit v pokryvu modelového území se situací v ČR .. 122
7 Socioekonomická charakteristika modelového území ... 129
 7.1 Obyvatelstvo: stav, struktura a vývoj .. 129
 7.2 Trh práce, zaměstnanost a nezaměstnanost .. 133
 7.3 Ekonomika – výrobní sféra ... 135
 7.4 Ekonomika – nevýrobní sféra ... 138
 7.5 Osídlení, města a venkov .. 141
 7.6 Územní diferenciaci – správní obvody obcí s rozšířenou působností, obce s pověřeným
 obecním úřadem ... 144
8 Disparity v modelové oblasti ... 158
 8.1 Historický exkurs .. 158
 8.2 Výčet a analýza sociálně-demografických disparit a specifik .. 159
 8.3 Těžba v Severočeské hnedouhelné pánvi ... 162
9 Literatura ... 173
Úvod

Podkrušnohoří (území okresů Chomutov, Most, Teplice a Ústí n. L.) je oblastí, která je po téměř století ovlivněna intenzivní důlní a průmyslovou činností. Zároveň se pod tímto vlivem uvedených těžebních a energeticko-industriálních aktivit postupně zvyšovala. Po instalaci centrálně plánovaného systému byla podkrušnohorští pánevní krajina všem obětvována zájmem stoupající těžby hnědého uhlí, jehož spalování se stalo základním energetickým zdrojem materiálově energeticky náročně české ekonomiky. Masová povrchová těžba hnědého uhlí dosahovala maxima v období 70. - 90. let dvacátého století (roční těžba se blížila až 100 mil. tun).

Devastující vliv jak na podkrušnohorškou krajinu, tak i na změny sociálně-ekonomické struktury jejího osídlení, byl způsobován zejména těžbou hnědého uhlí velkomovým způsobem a vysokokoncentrácí energetického a chemického průmyslu. Severočeská hnědouhelná pánev v rozsahu 250 km2 s navazujícími elektrárnami patřila na konci 80. let jako součást „Černého trojúhelníku“ k nejvíce devastovaným oblastem ve Střední Evropě.

Koncem dvacátého století dochází v důsledku transformace české ekonomiky na ekonomiku standardního tržního typu k výrazným změnám i v oblasti severních Čech. Dochází k útlumu těžby, průmyslové činnosti, v zemědělství se snížila intenzita hospodaření, využití půd a poklesem stavů hospodářských zvířat se výrazně snížil rozměr zvířecích výroby. V důsledku nižší průmyslové i zemědělské činnosti se zvyšuje podíl opuštěných devastovaných ploch (brownfields), nevyužívaných agrárních ploch a v oblasti je zároveň nejvyšší nezaměstnanost v rámci ČR.

I když probíhala obnova krajiny po těžebních a průmyslových činnostech a území bylo rekultivováno, přesto není dostatečně revitalizováno. Poškozené krajiny nedokázaly obnovit podmínky pro opětovné zdravé fungování ekosystémů. Do masivně odvodněné a velkoplošně překopané pánevní krajinu se dosud nepodařilo vrátit krátké vodní cykly, které jsou podmínkou pro plnění základních životodárných funkcí ekosystémů a jsou i podmínkou pro návrat člověka do pánevni krajiny modelového podkrušnohorškého regionu.

Příspěvkem Fakulty životního prostředí UJEP v Ústí n. L. pro řešení problematiky silně antropogenně postižené oblasti bylo zahájení prací (od 1.4.2007) na projektu v rámci prováděného výzkumu regionálních disparit. Účelem projektu je přispět k nápravě devastované oblasti Severních Čech, postupně navrhnout metodické postupy pro řešení účinné revitalizace území pánevnicích okresů a k návratu člověka do obnovené krajině. Získanými poznatky tak přispět k řešení regionální politiky a ke snížení environmentálních i sociálně-ekonomických disparit.
Cíl

Předmětem Studie Revitalizace antropogenně postižené krajiny v Podkrušnohoří - její I. části „Přírodní a sociálně ekonomické charakteristiky disparit průmyslové krajiny v Podkrušnohoří“ je stručná informace o výsledcích práce kolektivu řešitelů na výzkumu regionálních disparit v projektu WD-44-07-1 „Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří“. Byly prováděny analýzy modelového území, zaměřené na geografické, environmentální, sociální a ekonomické ukazatele charakterizující modelové území, zpracovávané formou dílčích zpráv za jednotlivé aktivity. Pro období do 30.7. 2008 byly vymezeny následující dílčí cíle řešení:

DC 001 – Zpracování charakteristiky modelového území pánevních okresů a identifikace klíčových faktorů podílejících se na příčinách socioekonomických a environmentálních disparit

DC 002 – Teoretická východiska pro možnost revitalizace území modelové oblasti.

Na uvedené dílčí úkoly navazují práce zahrnuté do Plánu aktivit. Za uvedené období byly ukončeny následující části:

- Zpracování charakteristiky modelového území pánevních okresů z hlediska geografického (A 401)
- Zpracování analýzy půdního fondu v modelové oblasti (A 402)
- Analýza sociálního prostředí v území podkrušnohorské pánve (A 403)
- Studium faktorů horninového prostředí zatížené oblasti Podkrušnohoří (A 404)
- Zpracování socioekonomické analýzy modelového území (A 405)
- Hodnocení ekologických a ekonomických funkcí biotopů (A 406)
- Sledování vodních režimů krajiny v severních Čechách (A 420)

Úkoly, které byly vymezeny v jednotlivých aktivitách, byly řešiteli zpracovány formou samostatných dílčích zpráv a jejich výsledky jsou podkladem pro vznik předkládané publikace. V rámci řešených problémových okruhů byla provedena identifikace a analýza klíčových faktorů, které se podílejí na příčinách environmentálních a socioekonomických disparit podkrušnohorského pánevního regionu.
Metodika

Úvod studie je zaměřen na obecnou problematiku zapracovanou v části „Teoretické přístupy k řešení regionálních disparit“, zabývá se historií, příčinami regionálních disparit a regionální politikou a jejími nástroji.

Na úvodní část navazuje základní charakteristika modelové oblasti, kterou tvoří okresy Chomutov, Most, Teplice a Ústí nad Labem. Na obecnou charakteristiku územního celku navazuje hodnocení přírodních podmínek (A401).

S hodnocením přírodních podmínek úzce souvisí problematika environmentální týkající se vybraných složek životního prostředí, půdy, cyklů vody a ekosystémů.

Zákonitě na tuto problematiku navazuje výtah ze zpracované analýzy půdního fondu, která vychází jednak z kvantifikace půdního fondu zájmové oblasti, z hodnocení jeho kvality včetně zátěže rizikovými prvky vycházející z monitoringu půd a agrochemického zkoušení půd, hodnocení fyzikálních a chemických vlastností i stavu lesních půd na Krušných horách. Samostatnou část tvoří specifická problematika pro Podkrušnohorskí – hodnocení rekultivace v zájmovém území. Součástí je i informace o stavu provozního pokusu s bioalgináty(A402).

Na území Severočeské hnědouhelné pánve a Sokolovské pánve vzniklo v průběhu 20. století povrchovou těžbou hnědého uhlí celkem osm velkých důlních prostorů. Tyto důlní prostory po sobě zanechávají rozsáhlé zbytkové jámy.
Pro rekultivaci těchto zbytkových jam byla navržena hydrická varianta, tedy jejích zatopení vodou. V současnosti probíhá napouštění jezera Chabařovice, kde se sledují a i nadále se budou sledovat ekologické faktory. Jedná se zejména o sledování biomanipulačních opatření (hlavně složení rybí obsádky v jezere), stability břehů a sledování kvality vody (A 420).

Sluneční energie a voda tvoří prazáklad života na této planetě. Díky působení sluneční energie, která je na přirozeném, v tomto mírném klimatickém pásmu severní polokoule vegetací krytém, povrchu Země absorbována vegetací a disipována (rozptylována, přenášena) vodou a vodními cyklami ve vegetaci a v krajině. Pro podstatnou část sluneční energie (60-80%) je určující, zda se spořejuje na výpar vody nebo zda se na uměle odvodněných površích (s odstraněnou vegetací či zpevněných, zastavěných površích apod.) mění na teplo.

Fungování přírodního ekosystému je podmíněno přítomností vody. Existence vody na určitém konkrétním zemském povrchu je nutnou podmínkou pro účinné fungování ekosystémů a pro plnění jejich životodárných úloh. Voda hraje zásadní roli ve vazbě sluneční energie v krajině, je-li nepřítomna, jako je tomu na řádě antropogenizovaných, člověkem přeměněných površích (povrchové těžby, výsypky, zpevněné povrchy, zástavby atd.), potom většina sluneční energie je odrážena od povrchu zpět a způsobuje pouze ohřívání atmosféry. Sluneční záření tak na površích bez vegetace a vody není schopno zajistit plné základní životodárné funkce (biogeochemické cykly živin), které plní na přírodních či přírodně blízkých površích.

Problematicka funkcí ekosystémů v Podkrušnohorské krajině je specifická. Byla zpracována v další dílčí studii navazující na aktivitu A 406. Antropogenní biotopy konkurují v nárocích na území přirozeném a přírodě blízkém biotopům. Udržitelná obnova a řešení disparit antropogenně postižené krajiny znamená optimalizovat poměr mezi přirozenými a antropogenními ekosystémy tak, aby došlo do nejrychlejší k obnově ekologických funkcí a sluzeb na území pánevnických okresů. U antropogenních částí modelového území je nutné brát v úvahu jeho ekonomické hodnoty a také nově vznikající ekologické újmy.

Na problematiku přírodovědných a environmentálních aspektů navazuje část zabývající se zpracováním sociálně ekonomické charakteristiky modelového území z geografických a sociálně ekonomických hledisek. Závěr studie tvoří problematika disparit v modelové oblasti.

Část zaměřená na přírodní a sociálně ekonomické charakteristiky disparit průmyslové krajiny v Podkrušnohoří představuje analytické podklady, které budou využívány pro zpracování návrhu metodických postupů pro řešení revitalizace území pánevních okresů.
1 Teoretické přístupy k řešení regionálních disparit

Pod pojmem regionální disparity označujeme ty meziúzemní ekonomické, sociální a environmentální rozdíly, a to především v ekonomické výkonnosti a zamestnanosti, které:

- jsou vyvolány subjektivní lidskou činností, a to především rozdílnou investiční aktivitou, rozvojem infrastruktury, vzdělávacího systému a růzností podmínek bydlení,
- jsou uchopitelné a řešitelné regionálním managementem a státní správou.

Problematika vzniku regionálních disparit, jejich tlumení až odstraňování, s tím spojených finančních toků v příjmech a výdánech systému veřejných rozpočtů – to vše bezesporu rezonuje s politickým, kulturním a morálním životem české společnosti, s ambicemi některých jejich vrstev v celku i v její regionální diverzifikaci. Problematika jejích řešení je – ve větši či menší míře – sledována v hospodářské politice státu, resp. v segmentu její regionální politiky.

Analýza trendů regionálních disparit a jejich politické a sociální únosnosti vyžaduje posouzení z hlediska deklarovaných cílů dané společnosti, jejích výchozích ideologických a politických postojů a premis. A to tím spíše, že řešení převážné části regionálních disparit je věcí politického rozhodnutí a kriteria ekonomické efektivnosti se při něm uplatňují jen k volbě mezi variantami řešení.

Po rozpadu Československa byla na úrovni české administrativy věnována pozornost disparitám mezi kraji. To souviselo jak s konstituováním nového krajského systému (VÚSC – vyšší územní samosprávné celky), tak i Evropskou unioní (euroregiony, evropské strukturální fondy, NUTS) a s čerpáním prostředků z jejich strukturálních fondů. Tyto analytické práce byly prezentovány v dokumentaci „Strategie regionálního rozvoje České republiky“ z r. 2000, jejíž zpracování navázalo na usnesení vlády ČR č. 235/98. Mezikrajové disparity jsou na úrovni ČSÚ průběžně sledovány a s výsledky je seznamována vládní administrativa a veřejnost, naposledy (15. XI. 2007) materiálem „Analýzy regionálních...

1 synonymně: nerovnosti, různosti, rozdílnosti, rozdíly

2 Připomeňme v této souvislosti jen medializované spory o kategorizaci obcí při stanovení proporcí jejich dotování ze strany státního rozpočtu, spory o to, zda se má Praha ucházet o OH a z jakých zdrojů financovat nezbytně vyvolané investice, o snaze Prahy čerpat prostředky z rozvojových fondů EU.

3 Dosavadní KNV byly zrušeny k 1. VII. 1990, stávající kraje ustaveny k 1. I. 2000

4 viz: http://www.dhv.cz/regstrat/
rozdílů v publikacích ČSÚ⁵ (schéma rozdělení ČR na jednotlivé NUTS je uvedeno na obrázku č. 1.)

1.1 Stručný historický exkurz teorii lokace výroby

Základním rysem lokalizačních teorií je jejich mikroekonomický přístup. Jde tedy o územně výrobní jednotku, firmu, která hledá polohu, jež by ji umožnila optimalizovat ekonomické cíle, které spočívají v:

- minimalizaci nákladů firmy. Tento cíl byl spojen s existencí jednobo- dového trhu, kdy se při pružné poptávce všechny výrobky prodají a firma může maximalizovat zisk jen tak, že minimalizuje náklady,
- maximalizaci zisku. Zde se vychází ze skutečnosti, že se nedá předpo- kládat soustředění trhu v jednom bodu. Při větším počtu tržních míst dochází u nich k různým přepravním nákladům a k rozdílným cenám zboží ovlivňovaným nabídkou a poptávkou. To vede k orientaci na maximální zisk místo minimalizace nákladů.

Hlavní přínos jeho teorie je ve vymezení systému lokalizačních faktorů a jejich klasifikace. Výklad tohoto teoretického modelu vyžaduje určité abstrakce. Při tom Weber předpokládá:

⁵ viz: http://www.czso.cz/cs/ni/analyzy_regionalnych_rozdilu_v_publikacich_h_csu
nerovnoměrně rozmístěné zdroje surovin,
soustředění trhu do jednoho místa,
nerovnoměrné rozmístění zdrojů pracovních síl (jsou značně nepohyblivé, jejich mzda je úměrně rozdílná),
volný přístup výrobců na trh, kde jsou dané ceny, které výrobci nemohou ovlivnit,
rozdíly v území vyplývající z institucionálních zvláštností obchodní politiky státu, v úrovni techniky.

Podle předmětů vytvářejících ekonomické výhody rozděluje Weber lokalizační faktory na:

regionální, kdy firmy získávají výhody vyplývající z charakteru geografického prostředí, tedy geografických podmínek území,
aglomerační (resp. deglomerační), které vyplývají z ekonomických vztahů mezi firmami, jejich seskupení nebo naopak rozptylu.

Na základě podrobné analýzy jednotlivých nákladových složek zajišťujících rozvoj výroby firmy dochází Weber k závěru, že hlavními všeobecnými regionálními faktory jsou dopravní náklady a náklady na pracovní sílu. Všechny ostatní faktory souvisí se vzájemnými vztahy podniků a dají se zahrnout do skupiny faktorů aglomeračních, tj. získání výhody aglomerace při výrobě a odbytu.

Z tohoto velmi stručného výkladu je patrný velký význam Weberovy teorie. V průběhu 20. století bylo o jeho teorii napsáno mnoho kladného i záporného. Skutečností však zůstává, že je prvním významným teoretikem, zabývajícím se lokalizací průmyslu, a že jeho pojmy, kategorií a metodického přístupu využívá i současná prostorová teorie, která však bere v úvahu i další faktory, jako je úloha monopolu a zásahy státu do lokalizace podniků.

Na základě podrobné analýzy jednotlivých nákladových složek zajišťujících rozvoj výroby firmy dochází Weber k závěru, že hlavními všeobecnými regionálními faktory jsou dopravní náklady a náklady na pracovní sílu. Všechny ostatní faktory souvisí se vzájemnými vztahy podniků a dají se zahrnout do skupiny faktorů aglomeračních, tj. získání výhody aglomerace při výrobě a odbytu.

Z nich jsou především významné práce britského ekonoma W. Beveridge (1879 – 1963), jenž byl žákem J. M. Keynese. Od otázek zaměstnanosti, tj. konkrétně růstu zaměstnanosti, se dostal až k otázkám oblastních disproporcí. Tento problém je v Anglii velmi starý a již liberální vláda roku 1909 se zabývala vylišňováním venkova. Oblastní disproporcionalita se projevovala, jako ostatně i v jiných vysoce hospodářsky rozvinutých zemích, jako rozvoj velmi silných průmyslových aglomerací na jedné straně a zaostávání venkova na straně druhé. Důsledkem bylo potom vylišňování venkova a urychlování koncentrace obyva-
telstva v průmyslových oblastech. W. Beveridge ve své knize „Plná zaměstnanost ve svobodně společnosti“, kterou vydal v roce 1945, doporučuje jako lék na tuto situaci intervenční hospodářskou politiku státu, tj. všemožné podporování a stimulování rozvoje zaostalých oblastí a naopak omezování rozvoje oblastí vysoce rozvinutých. Je ovšem třeba konstatovat, že britská vláda již tímto směrem postupovala před druhou světovou válkou, kdy na jedné straně vázala další investice v přehospodářovaných oblastech na souhlas státních orgánů, na druhé straně podporovala rozvoj zaostalých oblastí. Především to bylo formou státních investic, výhodným oprodejem státní půdy pro zakládání podniků, pronájem výrobních zařízení apod.

Lokalizační teorie, založené na mikroekonomickém přístupu, odpovídaly ekonomickému rozvoji druhé poloviny 19. a první poloviny 20. století. Následný prudký rozvoj výrobních sil a monopolizace se projevily jak na rozvoji všeobecně ekonomické teorie, tak na rozvoji prostorové teorie. Postupně je tedy věnována pozornost nejen faktorům ovlivňujícím lokalizaci jednotlivých firem v určitém místě, ale i otázce, jak rozhodnouti umístění podniků ovlivňuje ekonomickou činnost celého prostoru a tedy jak vytváří prostorovou ekonomickou strukturu. Objevují se auditoři, kteří dospívají k závěru, že lokalizované jednotky a jejich vzájemné vztahy vytváří v rámci národního hospodářství zvláštní hospodářské oblasti. Předmětem zájmu prostorové teorie se stává teorie oblastí se zaměřením na cíle jejich rozvoje, faktory ovlivňující tento rozvoj, analytické a metodologické nástroje.

V období po druhé světové válce dochází ke skutečnému rozkvětu teorii oblastního (prostorového) rozvoje. Tento zájem o prostorovou teorii nemá jen gnoseologické, ale je vyvolán hlavně tím, že vyspělé země jsou hospodářskými, sociálními a politickými tlaky nuceny prakticky se zabývat otázkami územního uspořádání ekonomiky a jejich důsledků.

Vznikají nejrůznější myšlenkové proudy, z nichž pro účely tohoto projektu je možno vybrat a stručně charakterizovat jen některé teorie a jejich představitele.

Souběžně s tzv. americckou školou rozvíjí se v Evropě tzv. francouzská škola prostorové teorie. Je představována především Francois Perrouxem (1903–1987), ale také i L. Davinem a dalšími. F. Perroux vychází z makroekonomické

V 80. a 90. letech 20. století bylo publikováno několik nových koncepcí a teorií regionálního vývoje, například teorie výrobního okruhu, teorie flexibilní specializace či teorie učících se regionů, jež iniciovaly diskusi o základních teoretických, gnoseologických a metodologických otázkách regionálního výzkumu. Bylo i diskutováno, do jaké míry mohou obyvatelé a další lokální subjekty ovlivnit vývoj své lokality. Motivaci, průběh a závěry zmíněných diskuzí zrekapituloval u nás Blažek (1999). Jeho publikace se pokouší o utěšení proměn, kterým v závěru 20. století prošlo pojetí regionálního rozvoje, jeho hlavních subjektů a mechanizmů regionální politiky. Citovaný autor přítom rozceznává hlavní vývojové etapy regionální politiky:

<table>
<thead>
<tr>
<th>obecný přístup</th>
<th>převažující teorie regionálního vývoje</th>
<th>indoktrinace regionální politika</th>
</tr>
</thead>
<tbody>
<tr>
<td>neoklasický (1920-1940)</td>
<td>teorie regionální rovnováhy (zejm. tzv. neoklasické modele)</td>
<td>základní idea: „dělníci za pracích“, hlavní nástroje: nástroje zvyšující mobilitu pracovních sil</td>
</tr>
<tr>
<td>keynesiánský (1950-1975)</td>
<td>Teorie regionální nerovnováhy (např. teorie kumulativních příchin, teorie pólů růstu)</td>
<td>„práce za dělníky“, nástroje podporující příliv investic ze soukromého i veřejného sektoru do problémových regionů (investiční dotace, relokace institucí)</td>
</tr>
<tr>
<td>neomarxistický (1970 - 1985)</td>
<td>teorie regionální nerovnováhy (např. teorie prostorových děleb práce)</td>
<td>návrhy na opatření neomarxisté neformulovali (v socialistických zemích byla reg. politika velmi učinná, ale za cenu ztráty vnější konkurenceschopnosti)</td>
</tr>
<tr>
<td>neokonzervativní (1975 -)</td>
<td>teorie regionální rovnováhy (např. path dependence, nová teorie růstu)</td>
<td>„podpora lokalní inicjativy“, podpora malých a středních řízení, decentralizace kompetencí, deregulační opatření,</td>
</tr>
<tr>
<td>neoinstitucionální (1980 -)</td>
<td>teorie regionální rovnováhy (např. teorie průmyslového okresu, teorie učících se regionů)</td>
<td>„spolupráce a inovace“, podpora malých a středních řízení, šíření inovací, networking, gradualistická proměna místních institucí, založená na učení</td>
</tr>
</tbody>
</table>

V 90. letech vznikla i řada prací, zaměřených na studium regionálních podmínek tvorby inovací a na studium mechanizmů dynamické konkurenční výhody zalo-
žené na zvláštní schopnosti regionálních subjektů se učí. Klíčovým motivem těchto přístupů je přesvědčení, že hlavním faktorem rozvoje je schopnost učit se a současně, že učení a tvorba inovací není doménou izolovaných firem, ale celé sítě různých subjektů v regionu. Tento směr bývá označován za teorii učících se regionů (learning regions), někdy i jako koncept lokálního inovačního milieu.

Badatelská obec v ČSR se po r. 1948 dostala do situace, kdy se v teorii územního plánu a oblastního plánu (což byly tehdejší terminologické ekvivalenty prostorové ekonomiky) orientovala až výlučně na pojетí frekventované v Sovětském svazu. Sovětské autoři navazovali převážně na práci a pojetí A. Webera a jeho školy. Akceptace trhu jako jednoho ze systémových a vývojových faktorů byla jim cizí. Teoretickým východiskem byla sovětským autorům: a) marxistická schémata rozšířené reprodukce - b) teorie optimálního plánování. Toto pojetí pak logicky vyúsťuje v tom, že model dostane podobu leontijevské input-output bilance.

Počátek 21. století je poznamenán v oblasti rozvoje teorie prostorové ekonomiky několika výraznými tendencemi:

- sílící tendence globalizace světové ekonomiky problematizuje až znehodnocuje úvahy a modely, které se prozatím omezovaly na území států (resp. národních regionů),
- teorie prostorové ekonomiky se počíná včleňovat do nově ustavující se disciplíny „Regional Science“ (Regionalní věda). Regional Science je chápaná jako společenská věda pojednávající v interdisciplinárním záběru o vývoji výrobně-sídelních seskupení, věnovaná regionům,
- do modelů, které v zásadě pokračují v tradici leontijeckého bilance input-output, jsou implantovány environmentální parametry a kriteria.

1.2 Příčiny regionálních disparit

Pozornost společnosti a zejména ekonomů se k problematice rozdílů v sociálně ekonomickém rozvoji jednotlivých regionů ve větší míře začala obracet již v souvislosti s celosvětovou hospodářskou krizí ve 30. letech 20. století. Zvýšený zájem o příčiny vzniku meziregionálních rozdílů se ale projevuje až v souvislosti s ukončením 2. světové války, kdy začíná být zjevné, že předpoklad klasické ekonomické teorie o automatickém obnovování ekonomické rovnováhy (a tedy i rovnováhy v rozvoji regionů) není v praxi úspěšně naplňován. Toto vedlo ekonomů ke zkoumání příčin těchto rozdílů, k hledání způsobů, jak tyto rozdíly zmenšit a k postupnému formování prostorové ekonomie a regionální politiky. Současná prostorová ekonomie vymezuje zejména tyto příčiny meziregionálních rozdílů:

- přírodní podmínky,
- demografická situace,
- ekonomická struktura,
- relativně nízká mobilita pracovních sil,
- relativně nízká mobilita kapitálu,
- institucionální faktory, politická rozhodnutí, psychologické faktory.

Pro účely této studie rozebereme první tři skupiny příčin, které jsou zvlášť specifické a mají tudíž největší váhu.

1.2.1 Přírodní podmínky

Obvykle se člení na osm dílčích prvků – půdní podmínky, nerostné zdroje, vodohospodářské podmínky, klimatické podmínky, reliéf, geografická poloha, flora a fauna. Pro každý stát i každou oblast je charakteristické určité spojení a kvalita osmi dílčích prvků přírodních podmínek, které tvoří tzv. přírodní komplex. Ten určitou měrou ovlivňuje ekonomickou strukturu, ale zpětně sama ekonomická struktura tyto přírodní podmínky mění a ty se stále více stávají osvojenými přírodními podmínkami. Nelze je tedy chápat jako pouhý dar přírody, ale také jako výsledek celého uplynulého ekonomického rozvoje. Přírodní komplex je tedy komplexem dynamickým, který se neustále vyvíjí jednak v důsledku působení přírodních zákonů a jednak vlivem ekonomických zásahů společnosti.

Základem vlivu přírodních podmínek na ekonomickou strukturu jsou na jedné straně oblastně diferencované přírodní podmínky a na straně druhé nestejné nákroky jednotlivých druhů činností na přítomnost určitých složek přírodních podmínek. Ekonomický vliv přírodních podmínek se projevuje v odlišných nákladech zejména v takových odvětvích, které je bezprostředně využívají. Jedná se
především o zemědělství, těžbu nerostných surovin apod., ale například i náklady stavebnictví jsou závislé na přírodních podmínkách (tepelné izolace budov, odlišné geologické podmínky vyžadují odlišné náklady na zakládání staveb apod.), stejně jako náklady na budování komunikací.

Důležitý faktor pro ekonomický rozvoj regionu představuje také geografická poloha vůči ekonomickému centru státu či společenství států. Regiony, které se nacházejí na okrajích států, pohraniční oblasti, se obvykle vyznačují nízkou kvalitou i hustotou dopravních sítí. To spolu se vzdáleností zvyšuje náklady na dopravu zboží na centrální, kapacitnější trhy. Tyto vyšší dopravní náklady, při jinak stejných výrobních nákladech jako u výrobců v příznivě položených regionech, se promítají do vyššího možnější realizace ceny, nebo do nižšího zisku. Obě tyto alternativy však představují snížení konkurenceschopnosti. Se vzrostoucí vzdáleností od ekonomických center také rostou náklady spojené se zajišťováním specifických služeb, které jsou v těchto centrech soustředovány a nevýhody, které jsou zahrnovány pod pojmem „náklady na kontakty“, např. informace o situaci na trhu, o konkurenci, inovacích a vědeckotechnickém rozvoji.

V posledním desetiletí výrazně pokročilo poznání v oblasti významu přírodních podmínek (zejména funkcí ekosystémů) pro regulaci průměrných teplot a složení atmosféry jakožto existenčních podmínek životu. Došlo k poznání, že přírodní podmínky jsou důležité nejen jako zdroje pro ekonomický růst, ale mnohem důležitější je jejich role v udržování podmínek pro kvalitní život lidí a obecněji pro biodiverzitu života na Zemi (Reid et al., 2005, Seják, Dejmal a kol., 2003). Proto v tomto projektu v duchu požadavků evropské strategie udržitelného rozvoje (SDS EU, 2006) budeme v modelovém území při návrzích řešení sledovat využitelnost regionálního rozvoje v integrovaném pohledu jeho sociálních, ekonomických i environmentálních souvislostí.

1.2.2 Demografická situace

Pro ekonomický rozvoj regionu má velký význam stabilizovaný přirozený demografický vývoj, tzn. ustálený přirozený přírůstek obyvatelstva, protože každá věková skupina obyvatelstva má specifické nároky na přítomnost určitých druhů zařízení v oblasti (předškolní zařízení, školy, pracovní příležitosti, zařízení sociální péče, zdravotnictví). V případě prudkých výkyvů pak dochází k tomu, že vybudovaná zařízení či pracovní příležitosti nestačí poptávce nebo nejsou dostatečně využívána a existuje převaha pracovních příležitostí nad nabídkou pracovních sil. Proto je důležité, aby byly pro jednotlivé regiony zpracovány demografické prognozy – nestačí celostátní, ale nutné jsou regionální průřezy s ohledem na značnou regionální diferenciaci věkové a sociální struktury obyvatel.

Základními činiteli ovlivňujícími demografickou situaci jsou procesy přirozené měny a migrace. Přirozená měna obyvatelstva je důsledkem biologických procesů – narození, stárnutí a smrti. Vzhledem k rozdílům ve věkové struktuře obyva-
tel i k rozdílným specifickým plodnostem v jednotlivých regionech jsou i proce- sy přirozené měny oblastně diferencované. Můžeme je vyjádřit přirozeným pří- růstkem obyvatel (počet živě narozených – počet zemřelých) a to buď absolutně, nebo v přepočtu na 1000 obyvatel.

Podle velikosti přirozených přírůstků v regionálním průřezu můžeme oblasti rozdělit do tří reprodukčních typů:

- oblasti nedosahující prosté reprodukce, kde je přirozený přírůstek zá- porný,
- oblasti dosahující prosté reprodukce nebo nepatrné míry rozšířené re- produkce, kde přirozený přírůstek je nulový nebo mírně kladný,
- oblasti s rozšířenou reprodukcí, kde je přirozený přírůstek kladný.

Z hlediska ekonomického rozvoje regionů je důležitá nejen věková a biologická struktura obyvatel, ale zejména kvantitativní a kvalitativní charakteristiky regio- nálních trhů práce. Jedná se zejména o zastoupení kvalifikované pracovní síly, která vytváří příznivější předpoklady pro umístění perspektivních, na kvalifikovanou pracovní sílu náročných výrob či služeb.

1.2.3 Ekonomická struktura

Ekonomická struktura oblastí, tedy zastoupení jednotlivých odvětví a činností v oblasti se utváří na základě rozhodování o prostorové lokalizací ekonomických subjektů. Z hlediska rozvoje regionů je důležitý podíl stagnujících odvětví, odvětví, která se z rozličných důvodů dostala do odbytových potíží a odvětví perspek- tivních, u kterých je předpoklad zvyšující se poptávky po jejich produkci. Oblasti s převažujícím podílem stagnujících a upadajících výrob se dostávají do závažných problémů s nezaměstnaností. Z hlediska stability ekonomického roz- voje oblastí se ukazuje jako značně nevýhodná příliš velká specializace regionu, tedy situace, kdy zaměstnanost v regionu je vázána na jedno odvětví ať přímo nebo nepřímo prostřednictvím zaměstnanosti v navazujících či obslužných pro- vozech.

V důsledku této jednostranné ekonomické struktury a neschopnosti se včas při- způsobit změněným odbytovým podmínkám, se mnoho regionů specializovaných na tradiční průmyslová odvětví (na výrobu železa či oceli, textilní průmysl, ale i těžbu uhlí) dostalo do značných ekonomických problémů a z regionů pro- sperujících se staly regiony degresivní, upadající.
1.3 Regionální politika – aktivní nástroj prostorové ekonomie

Prostorová ekonomie představuje samostatný a interdisciplinární vědní obor, který vychází z poznatků ekonomie, hospodářské geografie, urbanismu, sociologie a ekologie. Jde o relativně mladou vědní disciplínu, která se začíná ve svůj ucelenější podobě formovat až od druhé poloviny 20. století, přestože základy k ní v podobě lokalizačních teorií byly položeny již dříve. Vývoj této disciplíny probíhal odlišně v zemích s tržní ekonomikou a ekonomikou centrálně plánovanou.

Regionální politika (RP) je chápána jako soubor opatření, nástrojů, pomocí kterých má dojít ke zmírnění nebo odstranění rozdílů v ekonomickém rozvoji regionů. Konkrétní podoba cílů i nástrojů závisí na konkrétní hospodářské situaci země. Skutečností však je, že jde v prvé řadě o řešení problémů zaměstnanosti a celkových příjmů obyvatelstva.

Tato dvě hlediska jsou také rozhodující při vymezování tzv. problémových nebo podporovaných oblastí, tedy oblastí, ve kterých jsou uplatňovány příslušné nástroje. Nástroje regionální politiky mají podobu různých finančních úlev, subvencí, případně zjednodušené administrativy při podnikání nebo „zainvestování oblastí“ prostřednictvím účasti státu na vybudování technické infrastruktury v oblasti. Všechna tato opatření mají jediný cíl a tím je podpora podnikání ve vybraných oblastech.

Využívání zahraničních zkušeností

Podrobné studium zahraničních poznatků a zkušeností z regionální politiky a jejich potenciální aplikace v našich podmínkách jsou velmi důležité. Jednak tím, že nás utváří v nezbytnosti regionálních přístupů při analyzování a prognózování sociálně ekonomických jevů a procesů a při všestranném využívání širokého spektra místních a regionálních zdrojů a iniciativ. A dále v tom, že je možné postupně přenašet do našich podmínek a využívat těch zkušeností, nástrojů, legislativních, organizačních a institucionálních opatření, které se osvědčily.

Po roce 1989 zaujímalá vládní garnitura ekonomů k aktivní RP skeptická či negativní stanoviska. Nebyla obsažena v dokumentech o transformaci ekonomiky, docházelo k bagatelizování vzniku krajů jako hlavních nositelů RP, nebyla legislativa této činnosti. Mohla to být reakce na zprošťované plánovací praxi z období „reálného socialismu“ nebo spíše fundamentalistické pojetí liberální tržní politiky, dle níž „trh řeší vše“.

Nejde však pouze o německé, ale i podstatě o západoevropské zkušenosti, jejichž empirické analýzy dokazují, že tržní ekonomika směřuje spíše k prohloubení v sociální oblasti než k vyrovnání rádových nerovností mezi regiony. Je tomu tak zejména ve třech důležitých sférách:
• v zaměstnanosti, resp. v mře nezaměstnanosti
• v příjmech obyvatel
• v ekologických podmínkách a jejich narušení ekonomickou činností.

To jsou ukazatele, které se ve svých důsledcích výrazně promítají do politického a sociálního vývoje společnosti, jsou příčinou napětí a konfliktů v oblastech problémových na jedné straně a relativní spokojenosti, sociálního smíru a „attractivity“ určitých oblastí na straně druhé. To v žádném případě nevyřeší tržní mechanismus, ale pouze osvícená aktivní regionální politika, prováděná jak na vládní úrovni, tak politickými a správními regionálními orgány.

Hospodářská politika vlád zemí s tržní ekonomikou akceptuje – v menší míře či větší míře – skutečnost, že tržní mechanismus nezná etiku (morálku), ekologii a je sociálně ambivalentní. Dále akceptuje skutečnost, že v určitých případech tržní mechanismus selhává i za podmínek dokonalé konkurence, o tzv. tržní se lhání za podmíněk nedokonalé konkurence nemluvě.

Vlády v západoevropských zemích se v prvé řadě zaměřují na tzv. „problémové“ regiony s cílem regulovat vývoj zaměstnanosti tak, aby se zmírnily řádové regionální rozdíly v mře nezaměstnanosti. Vymezení problémových regionů se provádí na bázi exaktních údajů a informací, je časově omezeno a pravidelně vyhodnocováno, případně novelizováno na základě změněných skutečností. Problémové regiony jsou pak do určité míry zvýhodněny oproti „zbytku státu“, přičemž nejde vždy jen o finanční formu. Tyto mechanismy a nástroje regionální pomoci se postupně vyvíjejí, zdokonalují a modifikují.

Nerovný přístup k příjmům a pracovním příležitostem v regionálním průřezu se považuje za společensky nepřijatelný a morálně nespravedlivý. Nejde samožřejmě o detaily, ale o řádové rozdíly a aktivní regionální politika slouží jako jeden z nástrojů k dosažení tzv. sociální spravedlnosti. Pro zdůraznění tohoto aspektu se také začal používat výraz sociální tržní ekonomika.

Problémové regiony

Pojem problémový region se objevuje nejdříve v aparátu ekonomické geografie, kde označuje území, které se díky vlivu některých vnějších i vnitřních faktorů dostalo oproti okolním oblastem do výrazných problémů, a to především sociálních a ekonomických. Takové rozdělení národních ekonomik na oblasti vyspělejší a zaostalejší má své historické příčiny, výrazně se tyto rozdíly prohlušily především s postupem industrializace. Velmi progresivní vývoj byl zaznamenán především v regionech s dostatečným zdrojovým zabezpečením, které se staly centry průmyslového rozvoje.

Jejich význam pro národní ekonomiky se označuje nepříliš přehnaným výrazem „motory hospodářského růstu“ a jejich vývoj má bez ohledu na hranice států velmi shodné rysy: soustředění těžkých průmyslových výrob, příliv obyvatel-
stva, kapitálu, rozvoj infrastruktury i výrazné ekologické zatížení. Jako příklady zde je možno uvést oblasti Porúří, jižní části Belgie, severní Francie a řadu lokalit ve Velké Británii. Jednostranně zaměřená ekonomická struktura, která preferovala těžké průmyslové výroby navazující především na těžbu uhlí a železné rudy, dala vzniknout rozsáhlým komplexům, které zcela změnily dosavadní ekonomickou strukturu, sociální složení obyvatelstva i tvář krajiny.

Významnou stimulací aktivní regionální politiky byla uhelná krize od konce 50. let, která zachvátila postupně všechny tyto tzv. „staré průmyslové regiony – black country“. Jejich dynamický vývoj byl přerušen razantním snížením požadovaných produktů těchto regionů. Z motorů hospodářského růstu se prakticky přes noc staly obrovské zátěže nevyužitelného zdrojového potenciálu, což ve spojení se sociálními dopady vytvořilo z těchto oblastí zdroje sociálního a politického napětí a konfliktů.

1.3.1 Nástroje regionální politiky

V polistopadových českých podmínkách nebyla účelnost a existence regionální politiky hned obecně akceptována. Měla své odpůrce, kteří tvrdili, že v období tzv. transformace regionální politika a prosazování tzv. "regionální specifiky" spíše brzdi a neumožňovala v opozici vůči ekonomické reformě. 7 To se i projevilo na délce intervalu mezi zrušením KNV (1. VII. 1990) a ustavením krajů (1. 1. 2000). Postupem doby, v souvislosti se vstupem ČR do EU, bylo poznáváno instrumentárium regionální politiky používané v rámci EU a implantováno do zdejší praxe.8 Vedle členění ČR na kraje jsou v ČR rovněž vytvářeny tzv. „regiony soudržnosti“, které analogicky reagují na regionální členění států v EU NUTS 2 – viz obr. č. 1. Podle stupně účasti (zásahu) státu a úrovne (rozsahu) účinnosti lze utrždit nástroje regionální politiky tak, jak je naznačeno v tabulce č. 1.

8 Přehledně, leč obsažným způsobem je podán vývoj teoretických konceptů regionálních politik evropských států a EU ve stati (Kučerová 2007).
Tabulka č. 1 - Vliv státu na regionální politiku

Stupeň účasti (zásahu) státu

<table>
<thead>
<tr>
<th>úroveň</th>
<th>vysoký</th>
<th>nízký</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKRO (národní</td>
<td>Keynesiánské řízení poptávky</td>
<td>Monetaristická politika</td>
</tr>
<tr>
<td>hospodárství)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEZZO (regiony,</td>
<td>Diferenciace podílu obcí a regionů na</td>
<td>Dotace a subvence z veřejných rozpočtů</td>
</tr>
<tr>
<td>odvětví)</td>
<td>daňovém inkasu</td>
<td>a fondů EU</td>
</tr>
<tr>
<td>MIKRO (obec, podnik,</td>
<td>Investice státu a podniků se státní</td>
<td>Výchova a vzdělávání pracovní síly</td>
</tr>
<tr>
<td>jednotlivce)</td>
<td>účastí</td>
<td>Vytváření dočasných pracovních míst</td>
</tr>
<tr>
<td></td>
<td>Místní a věcná diferenciace sazeb</td>
<td>Průmyslové zóny</td>
</tr>
<tr>
<td></td>
<td>u daní z pozemků a nemovitost</td>
<td>Klastry</td>
</tr>
</tbody>
</table>

Keynesiánské řízení poptávky

Diferenciace podílu obcí a regionů na daňovém inkasu

Investice státu a podniků se státní účastí

Místní a věcná diferenciace sazeb u daní z pozemků a nemovitostí

Pramen: vlastní třídění

a/ Klastr je soubor regionálně propojených společností (podnikatelů) a přidružených institucí a organizací - zejména institucí terciárního vzdělávání (VŠ, VŠO). Zúčastněné společnosti si sice navzájem konkurují, ale současně společně řeší řadu obdobných problémů: vzdělávání zaměstnanců, přístup ke stejným dodavatelům, spolupráce s výzkumnými a vývojovými kapacitami, nedostatečné zdroje na výzkum apod. Díky spolupráci v těchto oblastech mohou řadu svých omezení překonat a získat výhodu vůči mimoregionální konkurenci.

Pramen: vlastní třídění
Obr. č. 1 - Členění území ČR na jednotlivá NUTS
2 Stručná charakteristika přírodních podmínek Podkrušnohoří

2.1 Rozloha řešeného území

Podkrušnohorská oblast zaujímá rozlohu 2 276 km², což je necelých 43 % rozlohy Ústeckého kraje (5 335 km²) a necelá 3 % území ČR (78 887 km²). Plošně největší je okres Chomutov, který lze rozlohou 936 km² zařadit mezi středně velké okresy ČR, představuje více jak 40 % řešeného území. Další tři okresy Most (467 km²), Teplice (469 km²) a Ústí nad Labem (404 km²) řadíme rozlohou v rámci ČR k okresům malým.

2.2 Přírodní podmínky

2.2.1 Geologické a geomorfológické podmínky

Z hlediska geomorfológie náleží celé území ke Krušnohorské subprovincii (Demek, Mackovčin et al. 2006; obr. č. 3), vnitřně je však velmi heterogenní, což je dáné především strukturním základem a mladou tektonikou, která měla za následek zvýraznění výškových rozdílů v terciéru a kvartéru. Významné prostorové zastoupení má Krušnohorská hornatina, která tvorí relativně kompaktní kru zapadající strmě na JV, kde její úpatí víceméně sleduje linii Krušnohorského zlomu a je místy rozčleněná horskými toky, které zde důsledkem snížení gradientu přecházejí v náplavové kužele. Krušnohorská hornatina je charakteristická právě výrazným vertikálním gradientem na jv.-jjv. svazích a dále vrcholovými zarovnanými povrchy (Král 1985).

Podkrušnohorské páne (v našem případě Mostecká pánev) reprezentují další z výrazných typů reliéfu, jenž je charakteristický nízkými relativními výškami, fosilní údolní sítí (Balatka 1994) a rozsáhlými antropogenními transformacemi reliéfu. Antropogenní transformace reliéfu (ATR) mají rozdílný charakter, efekt v krajině a z tohoto důvodu je při jejich hodnocení nutné brát v úvahu primárně vztah k dalším složkám životního prostředí (Loučková 1981). Dominantně jsou v zájmové oblasti zastoupeny montánní formy, které ovlivňují geomorfologickou stabilitu území (např. svahové deformace na jjv. úpatí Krušných hor vlivem odlehčení paty svahu; cf. Marek 2005), dále mikroklimatické a topoklimatické podmínky (změnami aktivního povrchu a topografie; např. Jeništa, Švec 2003), hydrický režim v krajině (změny vegetačního krytu závislého na určitém typu reliéfu, aj.), či vegetaci (změna stanovištních podmínek). Právě z důvodu vlivu na životní prostředí, s úvahou ATR jako „nového antropogenního povrchu“ (Loučková 1981) a s možnostmi využití jeho potenciálu bylo již v minulosti
provedeno syntetické a kartografickým výstupem podpořené hodnocení ATR v regionu (např. Kirchner, Loučková, Plachý in Přibyl 1986).

Obr. č. 3 -

Základní geomorfologické jednotky

Zdroj: Demek, Mackovčin (2006 eds.)

2.2.2 Klimatické poměry

Klimatickou situaci studované oblasti určuje její poloha v mírném vlhkém kontinentálním páse, kde převládá západní proudění vzduchu (např. Quitt 1971, Syrový 1958 red.). Celoročně se zde projevuje cyklonální činnost. Poloha na styku
vlivu oceánu od západu a kontinentu od východu má za následek značnou variabilitu počasí. Vedle této skutečnosti má na podnětí vliv i členitý reliéf a antropogenní činnost.

Podle Quittovy (Quitt 1971) klimatické klasifikace lze rozdělit území do tří základních oblastí:

- **chladná oblast CH** (hřebeny Krušných hor, Milešovka) je charakteristická velmi krátkým až krátkým, mírně chladným, vlhkým až velmi vlhkým létem a dlouhým přechodným obdobím s chladným jarem a mírně chladným podzimem, dlouhou až velmi dlouhou zimou a dlouhým až velmi dlouhým trváním sněhové pokrývky. Průměrné roční teploty se pohybují do 6 °C, srážky 650 až 1000 mm.

- **mírně teplá oblast MT** (svahy Krušných hor, Doupovských hor i většiny Českého středohoří). Oblast je typická normálně dlouhým až mírně teplým a mírně suchým létem. Normálně dlouhá zima je mírně teplá a suchá s krátkým trváním sněhové pokrývky. Přechodná období (mírně teplé jaro a podzim) jsou krátká. Průměrné roční teploty jsou 6 °C až 8 °C, srážky 550 mm (v některých oblastech díky srážkovému stínu méně než 450 mm) až 700 mm.

- **teplá oblast T** (v údolí Labe, Mostecké páni a v nejnižších částech Českého středohoří). Je nejvíce ve sledovaném období rozšířena. Charakterizuje ji teplé a suché léto, velmi krátké přechodné období s teplým až mírně teplým jarem a podzimem a krátkou mírně teplou a suchou až mírně suchou zimou. Průměrné roční teploty se proto pohybují mezi 8 až 9 °C a srážky 450 až 550 mm (obr. č. 4).
2.2.3 Hydrologické poměry

- Krušné hory – vrcholové části v okolí Klínovce, nad Chomutovem a Teplicemi jsou velmi vodné se specifickým odtokem 15 – 25 l/s na km², s malou retenční schopností a vysokým koeficientem odtoku (0,46 – 0,6). Ostatní jižní svahy Krušných hor jsou dosti (6 – 10 l/s na km²) až středně (10 – 15 l/s na km²) vodnými oblastmi.

- Pánev je málo vodná (3 – 6 l/s na km²) s malou až velmi malou retenční schopností, se silně až velmi silně rozkolísaným odtokem a nízkým (0,11 – 0,2) až středním (0,2 – 0,3) koeficientem odtoku.

- České středohoří je málo vodné (3 – 6 l/s na km²), s velmi malou nebo místy dobrou retenční schopností (v závislosti na geologické stavbě), silně až středně rozkolísaným (na západě) nebo málo rozkolísaným (na východě) odtokem. Koeficient odtoku je dosti vysoký (0,31 – 0,45) až vysoký (0,45 – 0,6).

Hydrografická sít v pánev je silně poznamenána antropogenní činností (viz dále).
Nejvýznamnějším tokem protékajícím v sledovaném území je řeka Labe. Dalším významným tokem Chomutovsko-ústecké oblasti je řeka Ohře (2. největší řeka Ústeckého kraje). Řeka Bilina dostala svůj název podle čisté bílé vody, dnes je jednou z nejvíce znečištěných řek. Délka toku je 84 km, vlévá se do Labe v Ústí nad Labem. Průměrný průtok u ústí je přibližně 5,5 m³/s.

Stojaté vody

Na řešeném území jsou stojaté vody reprezentovány rybníky, vodními nádržemi, dále se tu vyskytuje řada sníženín vzniklých po hlubině těžbě (pinky) nebo zatopené povrchové lomy (zejména po těžbě hnědého uhlí). Mezi nejvýznamnější stavby ovlivňující odtokové poměry patří vodní nádrže (Přísečnice - 362 ha a Fláje 153 ha). U dalších vodních nádrží převažuje víceúčelovost. Pro potřeby průmyslu jsou nejvíce využívány vodní nádrže Nechranice (1 338 ha) a Kadaň (67 ha).

Podzemní vody

Vodní cykly

Z celkové rozlohy modelového území (2276 km²) je v jeho jižní, pánevni části významná část bezprostředně narušena povrchovými těžbami, velkoplošnými externími výsypkami a souvisejícími dalšími antropogenními zásahy do území a jeho vegetace. Většina z těchto zásahů znamenala odstranění vegetace a byla spojena s narušením přirozené dynamiky povrchových a podzemních vod. Přirozenou sukcesi vytvořené krátké vodní cykly byly rozvráceny a tím narušeny podmínky pro zdravé fungování ekosystémů pánevniho a celého modelového území.

Antropogenně podmíněné změny hydrického režimu

Montánní činnost v regionu ovlivnila hydrický režim v krajině přímým a nepřímým způsobem (cf. Farský 2005). Přímo byl ovlivněn úcelovými překlady koryt vodních toků (např. řeka Bílina je mezi Chomutovem a Mostem vedena potrubím uměle vytvořeným koridorem), v mnohých případech byl narušen charakter koryta, které bude v budoucnu vhodné revitalizovat. Nepřímým ovlivněním jsou výše zmíněné antropogenní transformace reliéfu, které mění jednak topografii povrchu a tím i odtokové poměry a dále způsobily degradaci původně rozsáhlých zamokřených prostorů. Hydrický režim je dále transformován i rekultivacemi těžebních prostor (především metodami hydrické rekultivace).

Druhým významným činitelem ovlivňujícím hydrický režim v krajině studované oblasti jsou hydrotechnická a hydromeliórační úpravy související s dodávkami vody pro společnost (bydlení, průmysl, aj.). Tyto z hlediska přírodního základu narážejí předešvím na problém nerovnoměrného rozmístění zásob vody v krajině a z tohoto důvodu vyžadují úpravy zásobovací sítě. Mezi hydrotechnická opatření s kombinovaným charakterem (protekční, zásobovací, aj.) patří např. Podkrušnohorský přívaděč, který je systémem koryt, kanálů či potrubního vedení.

2.2.4 Půdní poměry

Půdy na území zájmové oblasti jsou velmi rozdílné. Je to díky geologickému základu, reliéfu, klimatickým podmínkám a významně antropogenní činnosti. Mapa půdních typů dokumentuje velkou heterogennost půdních poměrů (obr. č. 6).
V oblasti Krušných hor se vyskytují rezivé půdy, podzoly, kambizemě i organozemě. V páni se vedle kambizemí, které jsou zejména na okrajích, vyskytují pararendziny, místy se objeví i černozemě a vzácné smonice na třetihorních jílech. Posledně jmenované náleží k půdám s vysokou potenciální úrodností, jsou ovšem náchylné k různým druhům aberací, např. pedokompakci, která v území průmyslově a montánně využívaném patří k intenzivním procesům. Podél toku Labe a Bíliny nalezneme nivní půdy. V Českém středohoří se vyskytují také hnědozemě a degradované černozemě. Významné je zastoupení antropogenních půd vyskytujících se zejména v důsledku těžby uhlí a následných rekultivací.

2.2.5 Biota

Geografická specifik a bioty a jejich regionálních rozdílů jsou ve studované oblasti výrazně podmíněna geodiverzitou (heterogenitou přírodních složek krajin), především pak geologickým podložím (sedimenty pánví versus metamorffity Krušných hor či neovulkanity Českého středohoří, aj.), expozicí a nadmořskými výškami (výšková členitost, údolní a vrcholový ekofenomén, aj.), hydroklima-
tickými podmínkami (proudění vzduchu v průběhu roku, distribuce srážek, aj.) a půdními podmínkami (např. antropogenizace půdy páneví, kambizemé pahorkatín, aj.). Druhým faktorem ovlivňujícím biodiverzitu oblasti jsou antropogenní vlivy v průběhu celého holocénu, neboť některé z partií území byly intenzivně osídleny již v pravěku a sídlní struktury se zde rozvíjely i dále ve středověku, kdy s sebou nesly cílené změny rozsahu a charakteru lesních ekosystémů a další. Nejvýraznější transformace krajinného pokryvu a následně i vegetace ovšem nastávají v novověku a především pak v industriálním období v souvislosti s rozvojem průmyslu a těžby. Podstatným ukazatelem lidských zásahů do krajinného pokryvu (resp. bioty) jsou změny rozsahu lesních porostů. Tyto prostory jsou v současnosti limitovány vyššími polohami jako jv. úpatí Krušných hor (v nižších polohách smíšené, ve vyšších polohách zejména smrkové monokultury) a z. úpatí Českého středohoří (převážně opadavé lesy). Kromě změn rozsahu lesních porostů byla v minulosti pozmeněna taktéž druhová skladba, často ve prospěch druhů, které nebyly s to odolávat imisní zátěži či větrným kalamitám.

Biogeografické zhodnocení území z hlediska regionalizačních kritérií je uvedeno in Culek (1996 ed.), zastoupení specifických biotopů pak uvádějí např. Chytřý, Kučera a Kočí (2001 eds.). Z hlediska biogeografického členění se většina území nachází v hercynské subprovincii, k níž náleží následující bioregiony:

<table>
<thead>
<tr>
<th>Název</th>
<th>Kód</th>
<th>Rozloha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krušnohorský bioregion</td>
<td>1.59</td>
<td>1261 km²</td>
</tr>
<tr>
<td>Mostecký bioregion</td>
<td>1.1</td>
<td>1305 km²</td>
</tr>
<tr>
<td>Doupovský bioregion</td>
<td>1.13</td>
<td>647 km²</td>
</tr>
<tr>
<td>Milešovský bioregion</td>
<td>1.14</td>
<td>658 km²</td>
</tr>
<tr>
<td>Verneřický bioregion</td>
<td>1.15</td>
<td>673 km²</td>
</tr>
</tbody>
</table>

Z hlediska biodiverzity jsou ovšem podstatná také prostorově méně rozsáhlá, ale biogeograficky významná a kontrastní stanoviště, která dodávají sledovanému území komplexní charakter vzhledem k zastoupeným druhům. Významná jsou především subxerotermní stanoviště vhodné pro suchomilné a teplomilné druhy. Tato jsou reprezentována některými antropogenními transformacemi reliéfu (vyšpyky, kolejové náspy, území v okolí těžebních jam, aj.), případně i přirozenými biotopy, jež se vyvinuly ve specifických podmínkách svrchního pleistocénu a holocénu pod vlivem klimatických oscilací. K tému náleží například skalní výchozy v Krušních horách a Českém středohoří, některé jižně exponované otevřeně suté v Českém středohoří, aj. Mnohé ze sutí (kamenitých akumulací) jsou naopak příznačná pro glaciální reliktové druhy díky specifickému mikroklimatu (Kubát 2001 ed.).
2.2.6 Vybraná přírodní rizika

Další významnou skupinou přírodních rizik jsou procesy a jevy způsobené hydrometeorologickými extrémy. Povodně lze rozdělit do dvou skupin: a) bleskové povodně na malých vodních tocích sycených vodou z tání či srážkovou vodou z vyšších poloh (úzká erozní údolí s výraznou změnou gradientu při úpatí hor; např. Krušné hory); b) povodně vyvolané dlouhodobějšími dešti či jarním tání sněhu vázané na větší vodní toky (Ohře, Labe, aj.). Meteorologickými extrémy jsou zejména větrné kalamity (Kyrill počátkem roku 2007) či sněhové kalamity ve vyšších polohách Krušných hor a Českého středohoří. V pánevích oblastech sněhová pokrývka sice nedosahuje takové výšky, za větrných dnů ovšem v rozsáhlých otevřených prostorách dochází k tvorbě sněhových návějí a závějí, čímž sníh působí jako riziko v dopravních komunikacích. Jedním z nepřímých důsledků hydrometeorologických extrémů je také fluviální eroze povrchovým splachem či v rámci erozních linii (lineární prvky v zemědělské krajině, strže, drobné vodní toky, aj.).
3 Studium faktorů narušení horninového prostředí zatížené oblasti Podkrušnohoří

3.1 Úvod

Horninové prostředí je základní součástí životního prostředí. Je nejsvrchnější částí litosfery, kam zasahuje lidská činnost. Je v kontaktu se všemi sférami a to biosférou, hydrosférou i atmosférou. Tyto sféry se navzájem ovlivňují. Jedná se o vzájemnou interakci v pozitivním i negativním smyslu. Pro hodnocení jeho kvality však neexistují indikátory, které jsou potřebné ke stanovení narušení horninového prostředí a formulování konkrétních disparit. Tento výzkum si kladě za cíl tyto disparity kvalifikovat a následně kvantifikovat.

Pro jejich identifikaci bylo vybráno prostředí severních Čech, kde horninové prostředí je spolu se severní Moravou nejvíce postižené. Je zde zastoupena převážná část známých faktorů narušení horninového prostředí a to v mimořádném nahromadění. Jedná se o disparity zkoumaného regionu oproti ostatním regionům v České republice.

Oblast severních Čech, speciálně severočeská hnědouhelná pánev, je známa enormním antropogenním narušením zemského povrchu. Kvalifikovaný odhad uvádí až 90 % povrchu, který zahrnuje okresy Chomutov, Most, Teplice a Ústí nad Labem.

Obr. č. 8 - Zájmové území. Okresy Ústí nad Labem, Teplice, Most, Chomutov (in: Blažková 2002)
3.2 Cíle a metodika

3.2.1 Cíle

- Charakteristika a hodnocení horninového prostředí a hydrogeologických a hydrologických poměrů v Podkrušnohoří, včetně studia tepelného potenciálu a neobnovitelných přírodních zdrojů.
- Výzkum jejich narušení, specifikace hlavních rizik a stanovení priorit jejich nápravy.
- Specifikace disparit horninového prostředí a jejich definování jako indikátorů kvality horninového prostředí.
- Vytvoření přehledného dokumentu shrnujícího výsledky a doporučení pro využití a aplikaci při rozhodovacích řízeních v daném regionu.

3.2.2 Metodika

Shromáždění dostupných dat.

a) Rešerše archivních materiálů, b) studium literatury, c) odborné konzultace, d) ověřování informací „in situ“, e) analýza a syntéza získaných dat, f) zpracování závěrečné zprávy.

3.3 Základní geologická charakteristika zkoumaného území

Významné jsou neovulkanity komplexu Doupovských hor a Českého středohoří, a to právě v částech přiléhajících k pánvi.

České středohoří tvoří pestrou škálu petrografických typů hornin a forem těles neovulkanitů.

Platformní pokryv je zastoupen v terciéru vývojem v jezerních pánvích, v paleogénu a v neogénu.

Sedimentační prostor paleogenní zasahoval ze sokolovské pánve přes jižní okraje Doupovských hor na Podbořansko, neogenní pánev se vytvořila podél jižního okraje východní části Krušných hor a zasahovala dosti daleko na jih.

Krušnohorské krystalinikum tvoří podloží severočeské hnědouhelné pánve.

Všechny jmenované poruchy mají také regionální hydrogeologický význam, zvláště na uspořádání hydrogeologických poměrů zkušené oblasti.

3.4 3. Indikátory kvality horninového prostředí

Klasifikace intenzity narušení horninového prostředí a stanovení indikátorů horninového prostředí vychází z analýzy získaných informací. Pro celkové posouzení narušení horninového prostředí je nutné propojit jednotlivé procesy a neposuzovat je odděleně. Jedná se o změny, navzájem propojené podněty, zprostředkované vlivy a následky.

Pro Českou republiku bylo stanoveno (in: Kukal, Reichmann 2000) 5 kategorií, zvláště pro narušení mechanické a tak pro chemické. Stupně 1 – 5 klasifikují poměry od mírně až po extrémně narušené.

Mechanické narušení horninového prostředí je založeno na fenomelech, jako je eroze a sedimentace, svahové pohyby, krasové jevy, těžba nerostných surovin, stará důlní díla, stavební a zemní práce.

Na území, které je klasifikováno 5. stupněm mechanického narušení, je více než 50 % plochy postiženo značným přemísťováním velkých objemů hornin a zemín. Povrchové a hlubinné dobývání nerostných surovin, poddolovaná místa s nebezpečným propadáním povrchu. Husté osídlení, časté svahové pohyby, silná eroze, následná sedimentace a velká koncentrace průmyslové činnosti.

Chemické narušení horninového prostředí je definováno znečištěním podzemních vod a půd, zemědělskou činností, nadměrným výskytem nitrátů, těžkých kovů, kontaminovaných důlních vod, ovlivnění půd i rostlin atmosférickou depozicí, radonové emanace atd.

Nejvyšším stupněm 5 jsou hodnoceny oblasti s katastrofický znečištěním podzemními vodami rizikovými prvky s nadlimitními koncentracemi. Kontaminované půdy antropogenní činností na povrchu i atmosférickou depozici. Výskyt radonových anomálií apod.

Oba výše uvedené typy narušení horninového prostředí tj. mechanické i chemické působí obvykle společně.

Podle klasifikace narušeného horninového prostředí je odhadováno, že 8 – 15 % plochy České republiky má silně narušené horninové prostředí, kde žije přes 5 milionů obyvatel (in: Kukal, Reichmann 2000). Nejzávažněji jsou postižené ob-
lasti s nejintenzivnější těžbou nerostných surovin a největší koncentrací průmyslu. V České republice to jsou území severní Moravy a severních Čech. Zde žije přes 3 miliony obyvatel.

Hodnocení životního prostředí se zaměřením na horninové prostředí je proto jedním z nejvýznamnějších kriterií. V oficiálních metodikách se však toto kritérium zjevuje pouze v souvislosti s devastací povrchu. Projekt si proto klade za jeden z důležitých cílů specifikovat disparity horninového prostředí na příkladu nejvýraznějšího a to na území severních Čech Podkrušnohoří a definovat je jako indikátory.

3.5 Disparity horninového prostředí v Podkrušnohoří

3.5.1 Formulování faktorů horninového prostředí ve zkoumané oblasti Podkrušnohoří

Studiem dostupných informací a terénním výzkumem v území okresů Chomutov, Most, Teplice byly zjištěny a specifikovány následující faktory horninového prostředí.

Převážná část těchto faktorů jsou faktory negativně ovlivňující horninové prostředí.

Uváděné faktory jsou významně disparitní v porovnání s jinými regiony České republiky. Rozdílnost se především týká jejich mimořádného nahromadění v tomto území. Faktory nepůsobí jednotlivě, ale v různých kombinacích a tím intenzivněji.

V následující tabulce č. 2 je uveden přehled faktorů ovlivňující horninové prostředí.
Tabulka č. 2 - Faktory horninového prostředí

<table>
<thead>
<tr>
<th>faktor</th>
<th>váha/rozsah*</th>
<th>negativní vliv</th>
<th>pozitivní vliv</th>
<th>pozn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>těžba nerostných surovin povrchová</td>
<td>1</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>těžba nerostných surovin hlubinná</td>
<td>1</td>
<td>ano</td>
<td>ne</td>
<td>poddolovaná území</td>
</tr>
<tr>
<td>ložiska nerostných surovin</td>
<td>1</td>
<td>ne</td>
<td>ano</td>
<td>nerostné bohatství</td>
</tr>
<tr>
<td>chráněná ložisko-vá území</td>
<td>1</td>
<td>ne</td>
<td>ano</td>
<td></td>
</tr>
<tr>
<td>dobývací prostory těžené</td>
<td>1</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>dobývací prostory netěžené</td>
<td>1</td>
<td>ne</td>
<td>ano</td>
<td></td>
</tr>
<tr>
<td>antropogenní geomorfologie</td>
<td>1</td>
<td>ano</td>
<td>ano</td>
<td>nové tvary terénu</td>
</tr>
<tr>
<td>poddolovaná území</td>
<td>1</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>haldy</td>
<td>1</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>stabilita svahů těžebních jam</td>
<td>1</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>stabilita svahů výsypk</td>
<td>1</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>stará důlní díla</td>
<td>2 – 3</td>
<td>ano</td>
<td>ne</td>
<td>využití při rekultivacích</td>
</tr>
<tr>
<td>propady a pinky</td>
<td>3</td>
<td>ano</td>
<td>ano/ne</td>
<td></td>
</tr>
<tr>
<td>seismicita území</td>
<td>3</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>výskyt radonových emanací</td>
<td>3</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>radioaktivita energetických popelů</td>
<td>2</td>
<td>ano</td>
<td>ne</td>
<td>málo měřeno</td>
</tr>
<tr>
<td>důlní vody (podle kvality)</td>
<td>2</td>
<td>ano</td>
<td>ano/ne</td>
<td>využití při zaplavování jam</td>
</tr>
<tr>
<td>ukládání odpadů</td>
<td>2</td>
<td>ano</td>
<td>ne</td>
<td></td>
</tr>
<tr>
<td>geotermální energie</td>
<td>2 -3</td>
<td>ne</td>
<td>ano</td>
<td>Nízké teploty vody, ale místně značné výdatnosti</td>
</tr>
</tbody>
</table>

*váha/ rozsah – 1) významná, 2) středně významná, 3) málo významná

Pramen: Vlastní specifikace
Konkrétní příklady faktorů, které jsou součástí horninového prostředí a ovlivňují je

Příklady jsou uváděny u faktorů označených váhou a rozsahem 1, tj. faktory významné.

Těžba nerostných surovin povrchová a hlubinná

Těžba nerostných surovin je nejzávažnějším antropogenním zásahem do horninového prostředí. Jedná se o těžbu hlubinou i povrchovou. Jsou to největší vyhloubené tvary do zemského povrchu vytvořené člověkem.

V severních Čechách je nejzávažnější antropogenní geomorfologie, tedy výsledek přímých zásahů člověka do původního zemského povrchu, v oblasti povrchových lomů na hnedé uhlí.

Ne jenom vlivy fyzikálně-chemické, jako je prašnost, hluk, zápary, ale i vjem estetický byl a je stále velmi silný. Pohled na krajinu připomínající povrch Měsíce, tj. hrubé zásahy do morfologie území, novotvary výsypek, převážně bez zeleně, popřípadě s ruderalními společenstvy, působí značně depresivně.

Do skupiny tzv. podkrušnohorských pánví patří:
- severočeská hnědouhelná pánev (SHP) v prostoru od Kadaně na západě po Ústí n. L. na východě,
- sokolovská pánev (SP) na západ od Doupovských hor v okolí města Sokolova,
- chebská pánev se nachází na samém západním okraji Podkrušnohoří.

Severočeská hnedouhelná pánev zasahuje do všech studovaných okresů, kterými jsou ústecký, teplický, mostecký a chomutovský. Viz obrázek č. 8.

V podkrušnohorských hnedouhelných revírech se těží uhelná substance průmyslovým způsobem více než 150 let a jen v období od roku 1945 do roku 1998 byly vytěženy již téměř 3,4 miliardy tun hnedého uhlí až do konce 2. světové války však dosahovala těžba hnedého uhlí v této oblasti jen výjimečně úroveň vyšší než 20 mil. tun za rok. V poválečném období se však začala těžba hnedého uhlí prudce zvyšovat. Rostla v podstatě za každé pětileté plánovací období o více než 10 mil. tun a v polovině 80. let dosáhl severočeský hnedouhelný revír (SHR) 74,6 mil tun za rok.

Podle útlumové varianty těžeb, vycházejících z vládních usnesení z roku 1991 k územně ekologickým limitům velkohlomové těžby v současné době zůstalo v Podkrušnohoří v provozu pouze šest lomů o následující životnosti:

Mostecká uhelná společnost a.s. - Čs. armáda (cca 2020), Hrabák (cca 2045)
Severočeské doly a.s. - Bílina (cca 2030), Libouš (cca 2031)
Sokolovská uhelná a.s. - Jiří (cca 2026), Družba (cca 2036)
Útlumová varianta vývoje těžeb znamená definitivní a nenávratné ukončení těžby hnědého uhlí v severozápadních Čechách na začátku 30. let 21. století.

Obr. č. 9 - Dobývací prostory v SHP (in: Blažková 2002)

3.5.2 Ložiska nerostných surovin

Okres Ústí nad Labem – ložiska nerostných surovin výhradní

Bilancová výhradní ložiska v okrese Ústí n. L jsou zastoupena surovinami hnědé uhlí a stavební kámen. Hnědé uhlí je registrováno na lokalitách Varvažov – Gustav1, Modlany a na bývalém lomu Chabařovice. Ložiska stavebního kamene se nacházejí v katastru Lhota pod Pannou (trachyt), Řetouň (trachyt), Chvalov (bazanit), Ústí nad Labem–Mariánská skála (znělec), Lochočice – Rovný (čedič, bazanit, nefelinit), Libouchec-Chvojno (čedič-nefelinit), Tašov-Rovný (znělec, nefelinit) a Mírkov (nefelinit, analcimolit).
Okres Teplice – ložiska nerostných surovin výhradní

Okres Most – ložiska nerostných surovin výhradní

V okrese Most převažují ložiska hnědého uhlí, ale jsou zde i významná ložiska bentonitů. Zásoby hnědého uhlí zaujímají cca třetinu území okresu a nachází se v místech současné intenzivní těžby na lomu Československé armády (ČSLA) a Vršanech. Podrobný popis i se spravující organizací je na přiloženém přehledu (CD).

Ložiska bentonitů převážně pro slévárenské účely se nachází na lokalitách Braňany-Černý vrch, Obrnice-Vtelno (ještě netěženo), na Střimicích a u Libčic.

Dalšími surovninami jsou pak jíly, keramické nežáruvzdorné dosud netěžené, na lokalitě Bylany a stavební kámen v Braňanech-Červený vrch a Želenicích.

Okres Chomutov – ložiska nerostných surovin výhradní

V okrese Chomutov se nachází velké množství výhradních ložisek různých surovin.

Největší objem zahrnují ložiska hnědého uhlí, které je těženo povrchovým lomem Nástup (Tušimice-Libouš) a dosud netěžená ložiska Veliká ves, Vidolice, Bílence a Podlesice.

Z mosteckého okresu sem zasahují ložiska hnědého uhlí lomu ČSLA a Vršany.

Chráněná ložisková území (CHLÚ)

Okres Ústí nad Labem – chráněná ložisková území (CHLÚ)

Hnědé uhlí je chráněno na územích Varvažov, Modlany, Chabařovice a Chabařovice I.

Stavební kámen má statut ochrany ve Chvalově, Mírkově, Lhotě pod Pannou a v Litochovicích.

Okres Teplice – chráněná ložisková území (CHLÚ)

Zásoby stavebního kamene jsou chráněny na územích Hostomice nad Bílinou, Nechvalice-Velvěty, Všechny a Měřunice.

Cín-wolframová ruda a lítiová ruda má CHLÚ na Cínovci a v Krupeckách, kde jsou také chráněny i zásoby molybdenu.

Fluorit-barytová surovina je chráněna na Moldavě v Krušných horách. CHLÚ bentonitu a bentonitu pro slévárenské účely se nachází v Libšicích.

Okres Most – chráněná ložisková území (CHLÚ)

Nejvíce chráněnou nerostnou surovinou v okrese Most je hnědé uhlí. CHLÚ se nacházejí v Louce u Litvínova, Havraní I., Mostě, Holenicích, Poleradech a Havraní, kde jsou chráněny keramické nežáruvzdorné jíly.

Další častou chráněnou nerostnou surovinou jsou bentonity a to na lokálách Černý Vrch, Braňany, Střimice, Obrnice a Liběšice.

Okres Chomutov – chráněná ložisková území (CHLÚ)

Bentonit je chráněn u Pětipsů, spolu s kaolinem u Kojetíně u Radnic, se stavebním kamem u Vinař u Kadaně a s křemennými surovinami u Horní Vsi.

Fluorit-barytová surovina se nachází a je chráněna u Hradiště a Českých Hamrů u Vejpert.

Keramické nežáruvzdorné jíly jsou chráněny v katastrálním území Škrle a Nezabylice.
U Kovářské (a Kovářská I) a Vykmanova u Měděnce jsou vyhlášená CHLÚ železných rud a magnetitu.

Dobývací prostory (DP)

Okres Ústí nad Labem – dobývací prostory (DP)

V okrese Ústí nad Labem je v těžbě pouze jeden dobývací prostor a to DP Stříbrníky, kde surovinu znělec (fonolit) těží DOBET s.r.o., Ostrožná Nová Ves.

Okres Teplice – dobývací prostory (DP)

Na okrese Teplice je v těžbě celá řada dobývacích prostorů.

Okres Most – dobývací prostory (DP)

V okrese Most probíhá těžba Mosteckou uhelnou a.s., v dobývacích prostorech hnědého uhlí v Holešicích a Ervěnicích (Důl Československé armády) a Vršanech.

Společnost Keramost a.s. Most těží bentonit v dobývacím prostoru Braňany II, bentonit a dinasový křemenec v Židovicích a znělec v Želenicích.

Dobývací netěžené prostory hnědého uhlí ve správě Mostecké uhelné společnosti a.s. jsou v Trdlovce, Dolním Litvínově, Kopistech I., Kopistech II., Lomu I., Záluží u Litvínova, Slatinicích, Komořanech u Mostu, Souši II. A Souši III.

DP Most a Lom II se surovinou hnědé uhlí spravuje Palivový kombinát Ústí, s.p.
Tarmac CZ a.s., Liberec je správcem dobývacího prostoru znělce Braňany V. a KERAMOST a.s., Most spravuje DP bentonitu Braňany III.

Okres Chomutov - dobývací prostory

V okrese Chomutov je nejrozsáhlejší těžba v dobývacím prostoru hnědého uhlí Tušimice.

Keramost a.s., Most těží bentonit a kaolin v DP Rokle a Tarmac CZ a.s., Liberec čedič v DP Úhošťany.

3.5.3 Antropogenní geomorfologie

Antropogenní formy reliéfu definuji jako tvary zemského povrchu vytvořené, podstatně pozměněné nebo jen podmíněné činností či jen existencí lidí. Jejich klasifikace je genetická, podle toho, jak a proč je člověk vytváří (Kukal, Reichmann 2000).

V severních Čechách se nachází následující příklady regionálního charakteru:

a) montánní neboli hornické, b) industriální neboli průmyslové, c) agrární neboli zemědělské, d) urbánní neboli sídelní, e) komunikační neboli dopravní.

Antropogenní akumulace vznikaly v severočeské hnědouhelné pánvi od počátku těžby uhlí a intenzivní průmyslové činnosti. Antropogenními akumulacemi rozumíme zejména vnější a vnitřní výsypky povrchových dolů, odkaliště elektrárenských popílků, různé odvaly, haldy a skládky.

V území Severočeské hnědouhelné pánve jednoznačně dominují antropogenní změny morfologie horninového prostředí v důsledku těžby nerostných surovin. Významné jsou však i jevy vzniklé v souvislosti s činností řady velkých průmyslových podniků. Ve zkoumaném území je celá řada tzv. industriálních nebo průmyslových tvarů.
Nejvýznamnější vnější výsypky již v současné době splynuly s krajinou a dokonce i jejich modelaci krajina získala. Je to například výsypka Lochočická v blízkosti Ústí nad Labem, Radovesická u Bíliny, Obranců míru a Velebudická výsypka, která navazuje na zástavbu města Mostu. V nejzápadnější části zkoumaného území jsou významné výsypky u Chomutova a to Merkur a Březno.

Uváděné výsypky jsou z geomorfologického hlediska tvary vypouklé. Morfologie území je tvořena i antropogenními tvary vhloubenými, kterými jsou nová a nově budovaná jezera.

Stávající a k rekreaci využívaná jezera jsou např. Barbora u Teplic nebo Matylda a Benedikt u Mostu. V současné době s horizontem 2 – 3 let jsou napouštěna jezera Chabařovice a Most – Ležáky.

V severočeské hnéduhelné pánvi je registrováno téměř 90 % plochy zemského povrchu narušeného lidskou činností.

Intenzita narušení je závislá na známých faktorech, jako je hustota osídlení, rozmístění průmyslu, výskyt a uložení nerostných zdrojů, druh využití zemědělské a lesní půdy.

Ve studováném území se jedná především o těžbu hnédého uhlí, včetně doprovodných jevů, jako je ukládání hlušiny (odvaly a výsypky), zbytků po úpravě uhlí (kaliště), ale i ukládání popílku po jejich spalování v tepelných elektrárnách (Ledvice, Počerady, Pruněrov a Tušimice) a teplárnách jako jsou např. Trmice v Ústí nad Labem, nebo Komořany u Mostu.
Mezi lokální ovlivnění reliéfu zde patří staré sejpy zbylé po rýžování např. cínů na Krušných horách v okolí Krupky. Poklesové kotliny jsou následek poddolování nebo „pinky“, což jsou menší vyhloubeniny, obvykle trýchýřovitého tvaru, vznikající propadnutím terénu v místě poddolování nebo přímým vyhloubením při ložiskovém průzkumu i malé těžbě. V oblasti Krušných hor je jich velké množství.

Poddolovaná území

Dalším velmi významným indikátorem horninového prostředí, výrazně disparitního charakteru v porovnání s celou řadou jiných regionů v ČR, je poddolovanost území. Ta je rozšířená v celém zkoumaném území s určitými odlišnostmi, někde i dominuje nad těžbou stávající povrchovou. Jedná se o území, kde jsou registrována podzemní důlní díla jako jsou chodby, překopy, těžební i výdušné jámy atd.

Ve všech okresech je možné rozlišit poddolovaná území po těžbě rud (ta je vázána na Krušné hory) a po těžbě uhlí, což je celé území Severočeské hnědouhelné pánve.

V jednotlivých okresech jsou ojedinělé rozdílnosti. Například v okrese Ústí n. L. v Liboňově jsou vedle rud registrována stará důlní díla po těžbě radioaktivních surovin.

V okrese Teplice byly podpovrchovým dobýváním těženy nerudy (Měrunice, Bota).

Poddolovaná území po těžbě radioaktivní suroviny jsou zaznamenána v okrese Most na lokalitě Šumná 2.

Největší počet záznamů poddolovaných míst (123) je registrován v okrese Chomutov.

Haldy

Antropogenním vlivem na reliéf krajin v Podkrušnohoří a významným indikátorom kvality horninového prostředí jsou haldy po těžbě nerostných surovin. Ta to část je věnována haldám po těžbě rud, nerud a stavebních surovin.

Výsypky po těžbě hnedého uhlí a složité popílky z tepelných elektráren vzhledem k jejich velkému rozsahu nejsou do těchto přehledů zahrnuty. Rámecově je jejich výskyt graficky vyjádřen na obrázku č. 10 Antropogenní tvary z hornické a industriální činnosti.

Okres Ústí nad Labem – haldy

V okrese Ústí nad Labem se nachází haldy po těžbě měděných rud na hřebeni Krušných hor na Telnici a Krásném Lese v Krušných horách a na jejích úpatí v Liboňově a Žandově u Chlumce, kde byly těženy i rudy polymetalické. Na
Telnici je halda po těžbě fluoritu, barytu a dekorativního kamene. Haldy po těžbě stavebního kamene jsou v bývalých lomech Malý Ostrý, Rýdeč a Trmice.

Okres Teplice – haldy

Haldy jsou registrovány převážně na Krušných horách a na jejich úpatí.

Haldy po těžbě kamene jsou uvedeny z lokalit Měrunice, Rtyně, Červený újezd a Dubí u Teplic.

Okres Most – haldy

Haldy v okrese Most se vyskytují hlavně v souvislosti s bývalou těžbou polymetalických rud v okolí Hory Svaté Kateřiny a jedna halda je u Českého Jiřetína. Na Krušných horách jsou také zakresleny haldy v místech těžby antracitu u Brandova. Halda po těžbě kamene v lomu Verpánek se nachází v okolí Bečova u Mostu.

Okres Chomutov – haldy

Haldy jsou registrovány převážně na Krušných horách a na jejich úpatí.

Stejně jako největší rozsah poddolovaných území je v tomto okrese i největší počet záznamů hald (170).

3.5.4 **Stabilita svahů těžebních jam a výsypek**

Příkladem monitoringu, definování varovných stavů a omezení rozvoje těžebních prostorů je úsek hlavního krušnohorského svahu mezi Vysokou Pecí a Horním Jiřetínem, o šířce cca 5 km, který je nesporně nejproblématičtější oblastí v předpolí postupující uhlícté těžby v SHP. Vykazuje největší výšku a strmost a též specifické geologické poměry.
Uhelný velkolom Čs. armády se z centrální oblasti pánve měl koncem 70. let rozšířit až ke krušnohorskému úpatí.

Nejkritičtější místa jsou pod Jezeřím a Jezerkou.

Stabilizační pilíř a monitorovací systém zajišťují stabilitu svahu i v podzákladí zámku Jezeří. Zbytek dolního zámeckého parku, "tzv. arboretum", spočívá v rozsahu stabilizačního pilíře a je v prostoru sledovaném monitorovacím systémem.

Dobývání velkolomovým způsobem v těžební jámě hluboké 200 m a více pod svahem hor budovaných tektonicky postiženým a rozvolněným krystalinikem nemá ve světě obdobu.

Výzkum stability svahů výsypek byl realizován na modelových lokalitách výsypk Merkur, Libouš, Chabařovice a staré výsypky v prostoru Varvažovské pánve u Ústí nad Labem.

Výzkum se zaměřil zejména na zjišťování geomechanických vlastností výsypkového materiálu polními metodami a měřením in situ (měření propustnosti, průvzdušnosti a pórového tlaku). Výsledky výzkumných prací vedly k následujícím závěrům:

- hlavním zdrojem pórového tlaku je vlastní tíha výsypkových zemin;
- vývoj pórového tlaku je podmíněn možností a rozsahem strukturních změn sypaniny;
- nelineární vývoj pórového tlaku je způsoben nehomogenitou dotvarování sypaniny v závislosti na čase.

3.5.5 Geotermální energie

Česká republika není geotermální velmocí, ale existují zde zvýšené hodnoty tepelného toku a částečně se využívají tzv. nízkoteplotní hydrotermální zdroje. Jejich využívání zatím neovlivní národní spotřebu, ale lze s nimi počítat jako se strategickým zdrojem pro budoucnost. Teplotní anomálie se nachází právě ve zkoumaném území v Podkrušnohoří.

Výskyt geotermální energie, jako pozitivní disparity v Podkrušnohoří, bylo definováno na základě podrobné rešerše stávajících prací. Anomální teplotní oblast začíná na východě v oblasti Děčína a Benešova nad Ploučnicí a zaujímá území celého Podkrušnohoří a přechází až na Karlovarsko.

Rozhodující je mimořádně nahromadění výskytů termálních vod a množství dat o jejich vlastnostech.

V zájmovém území bylo prováděno již od začátku minulého století velké množství výzkumů termálních zdrojů. Přehled prací je podrobně uveden v práci M. Blažkové (2002). V Podkrušnohoří byly definovány podle geologické a tekto-
nické stavby tří termální hydrostruktury (Blažková 2002). V další etapě projektu budou dále podrobně studovány a rozšířeny o oblast okresu Chomutov.

Závěry a využití

Předkládaná informace je shrnutím rámcového zmapování významných faktorů horninového prostředí.

Zjištěné disparity horninového prostředí v Podkrušnohoří jsou v jednotlivých okresech zastoupeny obdobně, ale v odlíšném rozsahu.

Z grafu č. 1 je patrné, že celé zkoumané území je téměř z poloviny plochy zasaženo větším či menším množstvím faktorů narušení horninového prostředí.

Pozitivně je možné hodnotit disparitu existence ložisek nerostných surovin zaujímající 14 % plochy a následně plochy chráněných ložiskových území. Tento fakt má však za následek dopady sahající do historie s jejich exploatací. Poddolovaná území zaujímají 12 % území. Nejvíce je postižen okres Teplice (graf č. 3) díky těžbě v Hornokrupském a Cínoveckém revíru a to z 22 %. Celkově je území tohoto okresu postiženo disporitními faktory z 62 %. Okres Most (graf. č. 4) je poddolován z 18 % a to jak z těžby rud, ale významně i hnědého uhlí. Nejvíce ploch chránících ložiska dobývacími prostory (23 %) je v okrese Most, stejně na 33 % území se zde nacházejí ložiska nerostných surovin. Okres Most je tedy z celého zkoumaného území nejvíce zasažen disporitními faktory horninového prostředí a to z 87 %. Naopak okres Ústí nad Labem (graf. č. 2) pouze ze 14 %. Okres Chomutov (graf. č. 5) pak ze 41 %.

Výstupem práce pro další využití je definování jednotlivých disporitních faktorů horninového prostředí ve zkoumaném území, stanovení závažnosti a jejich procentuální kvantifikace.

Jednotlivé okresy v Podkrušnohoří jsou porovnávány mezi sebou, ale je možné je srovnávat i s jinými okresy nebo regiony mimo tuto oblast.

V dalších etapách bude problematika dále studována a bude provedena transformace faktorů na indikátory horninového prostředí. Vzhledem k tomu, že takové indikátory zatím neexistují, budou tyto podpořeny dalším výzkumem a konkrétními informacemi a bude snažena po jejich zabudování do legislativy.

Grafy významných disparit horninového prostředí pro celé zkoumané území (Podkrušnohoří) a v jednotlivých okresech:
Graf č. 1 - Podkršnohoří

Graf č. 2 - okr. Ústí nad Labem

Graf č. 3 - okr. Teplice

Graf č. 4 - okr. Most

Graf č. 5 - okr. Chomutov
4 Analýza půdního fondu v modelové oblasti

4.1 Zhodnocení půdního fondu v severních Čechách

4.1.1 Základní údaje o členění zájmového území

V této části jsou uváděny výchozí údaje o členění zájmového území s ohledem na katastrální území, kterých je 458 (43 % z celého Ústeckého kraje – dále UK), počtu obcí a jejich částí a údaje o parcelách (viz tab. č. 3).

Tabulka č. 3 - Počet obcí a katastrálních území v okresech zájmového území a Ústeckého kraje

<table>
<thead>
<tr>
<th>Okres</th>
<th>Obcí</th>
<th>Částí obcí</th>
<th>Katastrálních území</th>
<th>Parcel KN</th>
<th>Parcel ZE</th>
<th>Listů vlastnictví</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>44</td>
<td>173</td>
<td>152</td>
<td>165 675</td>
<td>0</td>
<td>47 751</td>
</tr>
<tr>
<td>Most</td>
<td>26</td>
<td>75</td>
<td>85</td>
<td>80 730</td>
<td>208</td>
<td>34 533</td>
</tr>
<tr>
<td>Teplice</td>
<td>34</td>
<td>114</td>
<td>111</td>
<td>127 532</td>
<td>2 189</td>
<td>40 641</td>
</tr>
<tr>
<td>Ústí nad Labem</td>
<td>23</td>
<td>102</td>
<td>110</td>
<td>128 379</td>
<td>1 360</td>
<td>48 352</td>
</tr>
<tr>
<td>Zájmové území</td>
<td>127</td>
<td>464</td>
<td>458</td>
<td>502 316</td>
<td>3 757</td>
<td>171 277</td>
</tr>
<tr>
<td>Ústecký kraj</td>
<td>354</td>
<td>1 145</td>
<td>1 057</td>
<td>1 122 999</td>
<td>219 445</td>
<td>349 682</td>
</tr>
</tbody>
</table>

Zdroj: Statistická ročenka půdního fondu České republiky 2007

V další části uvádíme informace o zalidnění zájmového území, výměrách zemědělského půdního fondu připadajících na 1 obyvatele, o zemědělcích podnikajících na 100 ha půdy, průměrné úřední ceně zemědělské půdy podle bonitovaných půdně ekologických jednotek (dále BPEJ) – viz tab. č. 4.
Tabulka č. 4 - Informace o půdním fondu České republiky (údaje k 1. 1. 1999)

<table>
<thead>
<tr>
<th>Obec</th>
<th>Počet obyvatel na km²</th>
<th>Počet zaměřených půd na obyvatele</th>
<th>Počet zemědělců na 100 ha ZP</th>
<th>Počet zemědělců na 100 ha OP</th>
<th>Průměrná cena na m² dle BPEJ</th>
<th>Celková cena ZP k 1. 1. 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>134</td>
<td>0,32</td>
<td>4,64</td>
<td>7,61</td>
<td>4,55</td>
<td>1 799 136</td>
</tr>
<tr>
<td>Most</td>
<td>257</td>
<td>0,12</td>
<td>7,99</td>
<td>11,35</td>
<td>5,62</td>
<td>785 229</td>
</tr>
<tr>
<td>Teplice</td>
<td>273</td>
<td>0,13</td>
<td>5,46</td>
<td>10,30</td>
<td>4,30</td>
<td>692 066</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>293</td>
<td>0,16</td>
<td>3,89</td>
<td>12,59</td>
<td>2,72</td>
<td>507 297</td>
</tr>
<tr>
<td>Zájmové území</td>
<td>239</td>
<td>0,18</td>
<td>5,50</td>
<td>10,46</td>
<td>4,30</td>
<td>3 783 728</td>
</tr>
<tr>
<td>Ústecký kraj</td>
<td>184</td>
<td>0,37</td>
<td>5,26</td>
<td>9,77</td>
<td>4,59</td>
<td>14 029 733</td>
</tr>
<tr>
<td>Česká republika</td>
<td>131</td>
<td>0,41</td>
<td>6,76</td>
<td>9,34</td>
<td>5,02</td>
<td>214 952 814</td>
</tr>
</tbody>
</table>

Zdroj: Situáční a výhledová zpráva půda 1999 – ČÚZK, ČSU, VÚMOP, VÚZE

Podklad pro tab. č. 4 vychází z komoditní studie Půda 1999. Lze konstatovat, že pokud jde o zemědělské výměry, za poslední období se stav výrazně nezměnil. Snížil se počet skutečně podnikajících zemědělců v kategorii nad 5 ha. Zvýšily se nájmy a především tržní cena půdy a to vlivem většího zájmu cizinců, ale i skupin zájemců, kteří nakupují především ze spekulativních důvodů.

4.1.2 Půdní fond obecně

Pro zájmové území je charakteristické nižší zastoupení zemědělské půdy (38,3 %) - přibližně o čtvrtinu oproti celostátnímu průměru (54 %). Přičemž nejméně zemědělské půdy nacházíme v okrese Most (29 %), naopak nejvíce v okrese Ústí nad Labem (45,4 %). Ani v jednom ze studovaných okresů se tak nepřibližuje krajskému či celostátnímu průměru.

Podíl ostatních ploch se výrazně odlišuje od celostátního průměru. Porovnáme-li vývoj ostatních ploch dle okresů za období 1960-2006, tak na Chomutovsku se zvýšil o 7670 ha, Mostecku o 3529 ha, Teplicku o 3312 ha a Ústecku o 2743 ha. Konkrétní údaje za jednotlivé druhy pozemků za sledované okresy, zájmové území celkem, Ústecký kraj a ČR jsou uvedeny v tab. č. 5.
Tabulka č. 5 - Analýza půdního fondu k 1. 1. 2007 v ha

<table>
<thead>
<tr>
<th>Okres</th>
<th>zemědělská půda</th>
<th>lesní půda</th>
<th>vodní plochy</th>
<th>zastavěné plochy</th>
<th>ostatní plochy</th>
<th>celková výměra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>39 172</td>
<td>34 477</td>
<td>3 151</td>
<td>1 147</td>
<td>15 586</td>
<td>93 533</td>
</tr>
<tr>
<td>Most</td>
<td>13 544</td>
<td>15 495</td>
<td>985</td>
<td>753</td>
<td>15 938</td>
<td>46 715</td>
</tr>
<tr>
<td>Teplice</td>
<td>15 938</td>
<td>17 302</td>
<td>770</td>
<td>1 037</td>
<td>11 879</td>
<td>46 926</td>
</tr>
<tr>
<td>Ústí n. Labem</td>
<td>18 328</td>
<td>12 677</td>
<td>762</td>
<td>908</td>
<td>7769</td>
<td>40 444</td>
</tr>
<tr>
<td>zájmové území (zú)</td>
<td>86 982</td>
<td>79 951</td>
<td>5 668</td>
<td>3 845</td>
<td>51 172</td>
<td>227 618</td>
</tr>
<tr>
<td>% v zú</td>
<td>38,21</td>
<td>35,13</td>
<td>2,49</td>
<td>1,69</td>
<td>22,48</td>
<td>100</td>
</tr>
<tr>
<td>Ústecký kraj (úk)</td>
<td>277 116</td>
<td>159 108</td>
<td>10 012</td>
<td>9 146</td>
<td>78 070</td>
<td>533 452</td>
</tr>
<tr>
<td>% v Úk</td>
<td>51,95</td>
<td>29,83</td>
<td>1,88</td>
<td>1,71</td>
<td>14,63</td>
<td>100</td>
</tr>
<tr>
<td>Česká republika (ČR)</td>
<td>4 254 403</td>
<td>2 649 147</td>
<td>161 421</td>
<td>130 194</td>
<td>691 534</td>
<td>7 886 699</td>
</tr>
<tr>
<td>% v ČR</td>
<td>53,94</td>
<td>33,59</td>
<td>2,05</td>
<td>1,65</td>
<td>8,77</td>
<td>100</td>
</tr>
</tbody>
</table>

Zdroj: Statistická ročenka půdního fondu České republiky 2007

V tab. č. 5 je dokumentováno zastoupení jednotlivých kategorií půdního fondu v zájmové oblasti a v Ústeckém kraji. Porovnává také zastoupení jednotlivých kategorií i v ČR. Zájmová oblast představuje 42,7 % území kraje, z podílu Ústeckého kraje je zde 50,2 % lesů a dominuje zde kategorie „ostatní plochy“ 65,6 % z podílu Ústeckého kraje. S ohledem na celostátní a celokrajské údaje jsou výrazné rozdílnosti v podílu zemědělské a orné půdy a naopak kategorie „ostatních ploch“ je v zájmovém území nejvyšší v ČR.

Lze konstatovat nízké zastoupení zemědělské půdy (38,2 %) a naopak podíl ostatních ploch je v zájmové oblasti 2,6x vyšší než je průměr ČR.

V zájmové oblasti je zastoupena podstatně méně zemědělská půda a to pouze na 38,2 % území proti 53,9 % zastoupení v ČR. Do kategorie ostatní plochy, která je v zájmovém území významně zastoupena, je zařazen těžební prostor a pozemky, na kterých probíhá rekultivace. Ve zbývající části Ústeckého kraje stejně jako v ČR je podíl ostatních ploch 8,7 %, což je 2,6x nižší podíl než v pánevních okresech. Největší podíl půdy zařazené do kategorie ostatní plochy je na okrese Most.

Analýza půdního fondu je zachycena i na grafech č. 6, 7 a 8. Tyto grafy jsou vždy zpracovány v %. Graf č. 6 znázorňuje analýzu půdního fondu v zájmovém území.

Z analýzy je patrné, že zemědělská půda v zájmovém území je zastoupena podstatně méně v porovnání s Ústeckým krajem a průměrem České republiky. Lesní půda je v zájmovém území zastoupena o cca 5 % více než v Ústeckém kraji, ve srovnání s ČR o cca 2 %.
Důležitým údajem jsou pak ostatní plochy, které jsou v zájmovém území zastoupeny z 22,5 %, v Ústeckém kraji 14 % a v České republice pouze 9 %. Největší podíl půdy v kategorii ostatních ploch má okres Most a Chomutov.

4.1.3 Zemědělský půdní fond a jeho kategorie

Dalšími údaji byla analýza vývoje jednotlivých kategorií půdního fondu za uplynulých 46 let (od r. 1960 v pětiletých intervalech do r. 1990, a od tohoto data jsou hodnoceny údaje za každý rok až do r. 2006) a vývoj je znázorněn graficky.

Zemědělská půda zájmového území od roku 1960 do roku 2006 vykazuje dlouhodobý trend poklesu.

Největší množství zemědělské půdy je v okrese Chomutov - 39 172 ha (od r. 1960 došlo k úbytku témněř 11 500 ha), nejméně zemědělské půdy vykazuje okres Most se současnými 13 544 hektary.

Vývoj snížování výměry zemědělské a orné půdy je prezentován v tab. č. 6.

Tabulka č. 6 - Úbytky zemědělské půdy v jednotlivých časových obdobích (v ha a %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>11 429</td>
<td>807</td>
<td>-22</td>
<td>39 172</td>
<td>29,2</td>
</tr>
<tr>
<td>Most</td>
<td>4 815</td>
<td>475</td>
<td>338</td>
<td>13 544</td>
<td>35,5</td>
</tr>
<tr>
<td>Teplice</td>
<td>4 777</td>
<td>460</td>
<td>159</td>
<td>15 938</td>
<td>29,9</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>3 857</td>
<td>565</td>
<td>249</td>
<td>18 328</td>
<td>21,0</td>
</tr>
<tr>
<td>Z ú celkem</td>
<td>24 878</td>
<td>2 307</td>
<td>724</td>
<td>86 982</td>
<td>28,6</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Od roku 1960 ubýlo 24 878 ha zemědělské půdy, což představuje 28,6 % z původního stavu. K absolutně nejvyššímu úbytku došlo na okrese Chomutov (11 429 ha), relativně nejvyšší úbytek byl na okrese Most, kde se výměra z roku 1960 snížila o 35,5 %.
Graf č. 6 - Vývoj zemědělské půdy v zájmovém území od roku 1960

![Graf zemědělské půdy v zájmovém území od roku 1960]

Zdroj: Statistické ročenky půdního fondu České republiky

Další analýza byla zaměřena na stav orné půdy, zornění dle okresů, v UK i ČR v r. 2007 (tab. č. 7) a její vývoj za období 1960-2006 (tab. č. 8, graf č. 7).

Tabulka č. 7 - Orná půda v zájmovém území k 1.1.2007

<table>
<thead>
<tr>
<th>Okres</th>
<th>zemědělská půda</th>
<th>z toho orná půda</th>
<th>zornění %</th>
<th>nezemědělská půda</th>
<th>celková výměra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>39 172</td>
<td>23 132</td>
<td>59,1</td>
<td>54 361</td>
<td>93 533</td>
</tr>
<tr>
<td>Most</td>
<td>13 544</td>
<td>9 451</td>
<td>69,8</td>
<td>33 171</td>
<td>46 715</td>
</tr>
<tr>
<td>Teplice</td>
<td>15 938</td>
<td>8 244</td>
<td>51,7</td>
<td>30 988</td>
<td>46 926</td>
</tr>
<tr>
<td>Ústí n. Labem</td>
<td>18 328</td>
<td>5 217</td>
<td>28,5</td>
<td>22 116</td>
<td>40 444</td>
</tr>
<tr>
<td>zájmové území (zú)</td>
<td>86 982</td>
<td>46 044</td>
<td>52,9</td>
<td>140 636</td>
<td>227 618</td>
</tr>
<tr>
<td>% v zú</td>
<td>38,21</td>
<td>52,94</td>
<td></td>
<td>61,79</td>
<td>100</td>
</tr>
<tr>
<td>Ústecký kraj (úk)</td>
<td>277 116</td>
<td>184 428</td>
<td>66,6</td>
<td>256 336</td>
<td>533 452</td>
</tr>
<tr>
<td>% v úk</td>
<td>51,95</td>
<td>66,55</td>
<td></td>
<td>48,05</td>
<td>100</td>
</tr>
<tr>
<td>Česká republika (ČR)</td>
<td>4 254 403</td>
<td>3 039 669</td>
<td>71,4</td>
<td>3 632 296</td>
<td>7 886 699</td>
</tr>
<tr>
<td>% v ČR</td>
<td>53,94</td>
<td>71,45</td>
<td></td>
<td>46,06</td>
<td>100</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Ve srovnání zájmových okresů s UK a ČR je vykazováno nejnižší zornění v ČR – a z toho absolutně nejnižší zornění vykazuje okres Ústí n. L.
Tabulka č. 8 - Úbytky orné půdy v jednotlivých časových obdobích (v ha a %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>14 395</td>
<td>5 741</td>
<td>692</td>
<td>23 132</td>
<td>62,2</td>
</tr>
<tr>
<td>Most</td>
<td>5 329</td>
<td>682</td>
<td>343</td>
<td>9 451</td>
<td>56,4</td>
</tr>
<tr>
<td>Teplice</td>
<td>5 831</td>
<td>1 805</td>
<td>156</td>
<td>8 244</td>
<td>70,7</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>5 645</td>
<td>4 739</td>
<td>411</td>
<td>5 217</td>
<td>108,2</td>
</tr>
<tr>
<td>Z ú celkem</td>
<td>31 200</td>
<td>12 967</td>
<td>1 602</td>
<td>46 044</td>
<td>67,8</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Úbytek orné půdy je zakreslen v grafu č. 7 (pozn. v některých místech mají okresy Most, Teplice a Ústí nad Labem podobné hodnoty, které se projevují v grafu tím, že se jednotlivé křivky překrývají). Z grafu je patrný výrazný úbytek orné půdy v okrese Chomutov.

Graf č. 7 - Vývoj orné půdy v zájmovém území od roku 1960

Zdroj: Statistické ročenky půdního fondu České republiky

4.1.4 Vývoj trvalých travních porostů v zájmovém území

Tabulka č. 9 - Rozdíly ve výměrách trvalých travních porostů v zájmovém území (ha a %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>3 257</td>
<td>5 926</td>
<td>672</td>
<td>14 277</td>
<td>22,8</td>
</tr>
<tr>
<td>Most</td>
<td>332</td>
<td>280</td>
<td>13</td>
<td>3 007</td>
<td>11,0</td>
</tr>
<tr>
<td>Teplice</td>
<td>930</td>
<td>1 493</td>
<td>128</td>
<td>6 361</td>
<td>14,6</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>2 226</td>
<td>4 194</td>
<td>172</td>
<td>11 953</td>
<td>18,6</td>
</tr>
<tr>
<td>Z ú celkem</td>
<td>6 745</td>
<td>11 893</td>
<td>985</td>
<td>35 598</td>
<td>18,9</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Od r. 1960 až do r. 1990 bylo prováděno hodnocení rozsahu luk a pastvin v pěti-letých intervalech, od r. 1991 až do r. 2006 každoročně a to i sumárně, tak jak jsou kategorie určeny zákonem – jako trvalé travní porosty. Údaje jsou uvedeny v tabulce č. 9 a v grafu č. 8.

Graf č. 8 - Vývoj trvalých travních porostů v zájmovém území od roku 1960

Zdroj: Statistické ročenky půdního fondu České republiky

56
4.1.5 Další druhy pozemků zemědělského půdního fondu

V kategorii zahrady došlo v zájmovém území k mírnému úbytku ploch (snížení o 438 ha, tj. 13,4 %). K největšímu snížení došlo na okrese Chomutov (32,1 %, graf č. 9).

Graf č. 9 - Vývoj ploch zahrad v zájmovém území od roku 1960

![Graf č. 9](image)

Zdroj: Statistické ročenky půdního fondu České republiky

Další sledovanou kategorií jsou ovocné sady. I v této kategorii je v z.ú. nerovnoměrný vývoj (viz graf č. 10).

Rozdíly u kategorie sady jsou v zájmovém území v letech 1960-2006 velmi nízké. V okresech Chomutov, Most, Teplice došlo ke zvýšení výměry (od 12,2 do 35,5 %) a na okrese Ústí nad Labem se stav výrazně snížil o 277 ha (o 75,5 %).

Graf č. 10 - Vývoj ovocných sadů v zájmovém území od roku 1960

![Graf č. 10](image)

Zdroj: Statistické ročenky půdního fondu České republiky
Relativně malé je zastoupení speciální kultury - chmele. Chmelnice je v z.ú. pouze 16 ha, významně poklesly od r. 1960 (viz graf č. 11). Plocha chmelnic se od roku 1960 do současnosti výrazně snížila. Tvoří v současné období pouze 0,6 % původních ploch.

Graf č. 11 - Vývoj chmelnic v zájmovém území od roku 1960

![Graf č. 11 - Vývoj chmelnic v zájmovém území od roku 1960](image1)

Zdroj: Statistické ročenky půdního fondu České republiky

V zájmovém území se s pěstováním vina započalo až v roce 1970 na okrese Most. Na okrese Chomutov se vinná réva začíná pěstovat až od roku 2001, postupně výměra na Chomutovsku stoupla na 22 ha a na Mostecku na 105 ha (viz graf č. 12).

Graf č. 12 - Vývoj ploch vinic v zájmovém území od roku 1960

![Graf č. 12 - Vývoj ploch vinic v zájmovém území od roku 1960](image2)

Zdroj: Statistické ročenky půdního fondu České republiky
4.1.6 Výměra zemědělské a orné půdy na 1 obyvatele

Dalším sledovaným ukazatelem je výměra zemědělské a orné půdy na 1 obyvatele (viz tab. č. 10).

Tabulka č. 10 - Výměra zem. a orné půdy v ČR a Ústeckém kraji na 1 obyvatele

<table>
<thead>
<tr>
<th></th>
<th>Výměra na 1 obyvatele</th>
<th>počet obyvatel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zemědělské půdy (ha)</td>
<td>orné půdy (ha)</td>
</tr>
<tr>
<td>ČR</td>
<td>0,4162</td>
<td>0,2974</td>
</tr>
<tr>
<td>Ústecký kraj</td>
<td>0,337</td>
<td>0,2243</td>
</tr>
<tr>
<td>Zájmová oblast</td>
<td>0,179</td>
<td>0,095</td>
</tr>
</tbody>
</table>

Zdroj: Statistická ročenka půdního fondu České republiky 2007

Jak vyplývá z tabulky č. 10 výměra orné půdy na 1 obyvatele v zájmové oblasti činí pouze cca 1/3 celostátního průměru a rovněž je výrazně nižší než je průměr Ústeckého kraje (43 %).

Tabulka č. 11 - Vývoj podílu výměry zemědělské a orné půdy v ČR na 1 obyvatele v letech 1936 - 2006

<table>
<thead>
<tr>
<th>Rok</th>
<th>Výměra na 1 obyvatele</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zemědělské půdy (ha)</td>
<td>orné půdy (ha)</td>
</tr>
<tr>
<td>1936</td>
<td>0,4710</td>
<td>0,3640</td>
</tr>
<tr>
<td>1950</td>
<td>0,5660</td>
<td>0,4330</td>
</tr>
<tr>
<td>1960</td>
<td>0,4790</td>
<td>0,3530</td>
</tr>
<tr>
<td>1970</td>
<td>0,4497</td>
<td>0,3340</td>
</tr>
<tr>
<td>1980</td>
<td>0,4251</td>
<td>0,3201</td>
</tr>
<tr>
<td>1990</td>
<td>0,4137</td>
<td>0,3106</td>
</tr>
<tr>
<td>2000</td>
<td>0,4164</td>
<td>0,2999</td>
</tr>
<tr>
<td>2005</td>
<td>0,4168</td>
<td>0,2982</td>
</tr>
<tr>
<td>2006</td>
<td>0,4162</td>
<td>0,2974</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Z přehledu za sedmdesátileté období (od r. 1936), ale zejména v porovnání s r. 1950 dochází k razantnímu snížení výměry zemědělské i orné půdy na 1 obyvatele v ČR. Stav tohoto ukazatele v zájmovém území je tak nízký, že jej lze považovat za významnou disparitu.
4.1.7 Nezemědělská půda

Tabulka č. 12 - Nezemědělská půda zájmového území v ha

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>42 982</td>
<td>50 240</td>
<td>54 548</td>
<td>54 361</td>
<td>11 379</td>
<td>26,5</td>
</tr>
<tr>
<td>Most</td>
<td>28 315</td>
<td>31 120</td>
<td>32 699</td>
<td>33 171</td>
<td>4 856</td>
<td>17,1</td>
</tr>
<tr>
<td>Teplice</td>
<td>26 201</td>
<td>27 937</td>
<td>30 522</td>
<td>30 988</td>
<td>4 787</td>
<td>18,3</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>18 249</td>
<td>18 755</td>
<td>21 544</td>
<td>22 116</td>
<td>3 867</td>
<td>21,2</td>
</tr>
<tr>
<td>Z ú celkem</td>
<td>115 747</td>
<td>128 052</td>
<td>139 313</td>
<td>140 636</td>
<td>24 889</td>
<td>21,5</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Celkem se zvýšil podíl nezemědělské půdy v horizontu let 1960-2006 o 24 899 ha, což je o 21 %. Vývoj v jednotlivých letech je znázorněn v grafu č. 13.

Graf č. 13 - Vývoj nezemědělské půdy v zájmovém území od roku 1960

Vývoj jednotlivých kategorií:

Vodní plochy

Kategorie vodních ploch se významně zvýšila o více jak 80 % (viz graf č. 14). Důvodem je zejména výstavba vodárenských nádrží (Písečnice, Fláje, víceúčelová nádrž Nechranice, Kyjice a Zaječice) a postupné zatápění zbytkových jam po hnědouhelné těžbě v okresech Chomutov, Most, Teplice a Ústí nad Labem (Barbora, Kateřina, Matylda, Modlany). Na okrese Most zanikla Dřínovská nádrž v důsledku těžby na ČSA.
Graf č. 14 - Vývoj vodních ploch v zájmovém území od roku 1960

Zdroj: Statistické ročenky půdního fondu České republiky

Zastavěné plochy

Vývoj je analyzován na grafu č. 15.

Graf č. 15 - Vývoj zastavěných ploch v zájmovém území od roku 1960

Zdroj: Statistické ročenky půdního fondu České republiky

Vývoj zastavěných ploch se v zájmovém území od r. 1960 do r. 2006 zvýšil o 531 ha, což je o 16 %. Nerovnoměrný vývoj je na okrese Most, důvodem byla zejména likvidace sídel z důvodu těžby uhlí.

Ostatní plochy

Analýza tohoto ukazatele je provedena v tab. č. 13, tab. č. 14 a grafu č. 16.
Tabulka č. 13 - Ostatní plochy zájmového území v ha

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>7 886</td>
<td>12 014</td>
<td>16 290</td>
<td>15 586</td>
<td>7 700</td>
<td>97,6</td>
</tr>
<tr>
<td>Most</td>
<td>12 417</td>
<td>13 767</td>
<td>15 423</td>
<td>15 938</td>
<td>3 521</td>
<td>28,4</td>
</tr>
<tr>
<td>Teplice</td>
<td>8 564</td>
<td>10 617</td>
<td>12 289</td>
<td>11 879</td>
<td>3 315</td>
<td>38,7</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>5 022</td>
<td>6 153</td>
<td>7 496</td>
<td>7 769</td>
<td>2 747</td>
<td>54,7</td>
</tr>
<tr>
<td>ZÚ celkem</td>
<td>33 889</td>
<td>42 551</td>
<td>51 498</td>
<td>51 172</td>
<td>17 283</td>
<td>50,9</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Největší nárůst v zájmovém území je v kategorii ostatních ploch - ze 33 889 ha v r. 1960 na 51 172 ha v r. 2006, což je o 17 283 ha tj. o 51 % (v porovnání s r. 1960).

Graf č. 16 - Vývoj ostatních ploch v zájmovém území od roku 1960

Tabulka č. 14 - Zastoupení ostatních ploch z výměry okresů v ha a %

<table>
<thead>
<tr>
<th>Okres</th>
<th>Stav 1960 v ha</th>
<th>% v r. 1960</th>
<th>Stav 2006 v ha</th>
<th>% v r. 2006</th>
<th>Celková výměra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>7 886</td>
<td>8,4</td>
<td>15 586</td>
<td>16,7</td>
<td>93 533</td>
</tr>
<tr>
<td>Most</td>
<td>12 417</td>
<td>26,6</td>
<td>15 938</td>
<td>34,1</td>
<td>46 715</td>
</tr>
<tr>
<td>Teplice</td>
<td>8 564</td>
<td>18,3</td>
<td>11 879</td>
<td>25,3</td>
<td>46 926</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>5 022</td>
<td>12,4</td>
<td>7 769</td>
<td>19,2</td>
<td>40 444</td>
</tr>
<tr>
<td>ZÚ celkem</td>
<td>33 889</td>
<td>14,9</td>
<td>51 172</td>
<td>22,5</td>
<td>227 618</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Za období od roku 1960 se zvýšilo zastoupení „ostatních ploch“ o 17 283 ha, tj. o 7,6 %.
4.1.8 Zařazování půdního fondu do oblastí

Nové vymezení zemědělských výrobních oblastí a podoblastí bylo zpracováno v roce 1996.

Stanovené výrobní oblasti a podoblasti charakterizují výrobní podmínky a využití půdního fondu ČR z hlediska půdně – klimatických podmínek území. Toto pak dává základ pro třídění katastrálních území a zemědělských podniků, které tam hospodáří.

Výsledky analýz jsou uvedeny v tab. č. 15, 16.

Tabulka č. 15 - Zastoupení výrobních oblastí u orně půdy zájmové oblasti

<table>
<thead>
<tr>
<th>Oblast</th>
<th>Ř</th>
<th>B</th>
<th>H</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>ha</td>
<td>36652</td>
<td>8027</td>
<td>1364</td>
<td>46043</td>
</tr>
<tr>
<td>%</td>
<td>79,6</td>
<td>17,4</td>
<td>3,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

V zastoupení výrobních oblastí u orných půd výrazně dominuje řepařská výrobní oblast (79,6 %).

Tabulka č. 16 - Zastoupení výrobních oblastí u zemědělských půd

<table>
<thead>
<tr>
<th>Oblast</th>
<th>Ř</th>
<th>B</th>
<th>H</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>ha</td>
<td>47464</td>
<td>24904</td>
<td>14612</td>
<td>86980</td>
</tr>
<tr>
<td>%</td>
<td>54,6</td>
<td>28,6</td>
<td>16,8</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

V zastoupení výrobních oblastí u zemědělských půd rovněž převládá výrobní oblast řepařská (54,6 %), ale významné je zastoupení oblasti bramborářské (28,6 %) a horské oblasti (16,8 %).

V zájmovém území dominuje řepařská oblast, nejvíce je zastoupena podoblast R2 (viz Situacní a výhledová zpráva půda 1999 – ČÚZK, ČSU, VÚMOP, VÚZE). Celkem je do této oblasti zařazeno 32 % orých půd. U zemědělských půd je v podoblasti R2 rovněž největší zastoupení půd 18,8 %, významné je ale i zastoupení H1 celkově 14,7 %.
4.1.9 Méně příznivé oblasti pro zemědělství (LFA)

Oblasti označované LFA (Less Favoured Areas) jsou oblasti s méně příznivými podmínkami pro zemědělství. Území spadající do LFA v okresech Chomutov, Most, Teplice a Ústí nad Labem ukazuje následující mapa.

Obr. č. 11 -

Méně příznivé oblasti se člení dle nařízení vlády ze 28. března 2007, Sbírka zákonů č. 75/2007, o podmínkách poskytování plateb za přírodní znevýhodnění v horských oblastech, oblastech s jinými znevýhodněními a v oblastech Natura 2000 na zemědělské půdě) na následující typy:

- horské oblasti typu H^A – území s nadmořskou výškou nad 600 m n. m. nebo výškou 500 až 600 m n. m. a svažitostí vyšší jak 7° na 50 % území;

- horské oblasti typu H^B – území nesplňující kritéria pro oblast typu H^A, které však bylo za účelem zachování celistvosti horské oblasti do této oblasti zařazeno;
• ostatní méně příznivé oblasti O^A – oblasti s výnosností zemědělské půdy nižší než 34 bodů nepatřící do horské oblasti, a které jako celek v průměru splňují demografická kritéria – hustota obyvatel nižší než 75 obyvatel/km² a podíl pracujících v zemědělství vyšší než 6 %;
• ostatní méně příznivé oblasti O^B;
• specifické oblasti S – území s výnosností zemědělské půdy nižší než 34 bodů nebo s výnosností 34 až 38 bodů a zároveň svažitostí vyšší jak 7° na 50 % území.

Významná je i oblast s označením E -

oblast s ekologickým omezením – území vymezená jako NATURA 2000 ležící navíc na území I. zón NP nebo CHKO.

Z mapy a podle výše zmíněné charakteristiky vyplývá, že velká část okresů má méně příznivé přírodní podmínky, proto i způsob hospodaření by se jim měl vhodně přizpůsobit.

Zemědělici hospodařící v LFA mají možnost, pokud splní zákonem stanovené podmínky, získat vyrovnávací příspěvky. Na území pánevních okresů bylo k 1.1.2007 evidováno celkem 25 027 ha půdy v LFA, tedy 40,61 % výměry evidované zemědělské půdy.

K zemědělské výrobě se využívá pouze určitá část zemědělského půdního fondu. Proto je zhodnocení využití zemědělské a především orné půdy obtížné, jelikož aktuální využití nemusí zcela odpovídat údajům uváděným ve statistikách katastru nemovitostí.

Na území pánevních okresů se do budoucna předpokládá zvyšování nepotravinářského využití orné půdy, aktuální je především pěstování plodin na výrobu bioetanolu.
Tabulka č. 17 - Zemědělská půda [ha] v oblastech LFA podle typu LFA a celkové uživatelské výměry:

<table>
<thead>
<tr>
<th>Okres Chomutov</th>
<th>Celková uživatelská výměra (ha)</th>
<th>HA</th>
<th>HB</th>
<th>OA</th>
<th>OB</th>
<th>S</th>
<th>SX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,31</td>
<td>0</td>
</tr>
<tr>
<td>1 - 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,66</td>
<td>0</td>
</tr>
<tr>
<td>> 5</td>
<td>7 256,32</td>
<td>0</td>
<td>31,29</td>
<td>0</td>
<td>3 768,08</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Okres Most</td>
<td>> 5</td>
<td>1 243,59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>325,11</td>
<td>166,96</td>
</tr>
<tr>
<td>Okres Teplice</td>
<td>1 - 5</td>
<td>0</td>
<td>1,08</td>
<td>0</td>
<td>0</td>
<td>6,19</td>
<td>0</td>
</tr>
<tr>
<td>> 5</td>
<td>2 338,72</td>
<td>14,63</td>
<td>0</td>
<td>0</td>
<td>854,55</td>
<td>1,77</td>
<td></td>
</tr>
<tr>
<td>Okres Ústí n. L</td>
<td>1 - 5</td>
<td>3,99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24,76</td>
<td>0</td>
</tr>
<tr>
<td>> 5</td>
<td>3 021,04</td>
<td>14,63</td>
<td>0</td>
<td>0</td>
<td>5 786,75</td>
<td>179,1</td>
<td></td>
</tr>
<tr>
<td>Zú celkem v ha</td>
<td>> 5</td>
<td>13 859,67</td>
<td>15,71</td>
<td>31,29</td>
<td>0</td>
<td>347,83</td>
<td>0</td>
</tr>
<tr>
<td>(25 027 ha)</td>
<td></td>
<td>13 863,66</td>
<td>347,83</td>
<td>347,83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zú v %</td>
<td>100,00</td>
<td>55,4</td>
<td>0,1</td>
<td>0,1</td>
<td>0</td>
<td>43,1</td>
<td>1,3</td>
</tr>
<tr>
<td>Ústecký kraj</td>
<td>58 541 ha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Z uvedeného tabulkového přehledu (tab. č. 17) je patrné, že celkem do LFA je v zájmové oblasti zařazeno 25 027 ha, to je dle stavu zemědělské půdy podle Statistické ročenky půdního fondu ČR (ČÚZK – Praha 2007) pouze 28,8 %. K zemědělské výrobě, která je vázana na dotace, se využívá pouze určitá část zemědělského půdního fondu. Drobní zemědělci a někteří podnikatelé však žádost o poskytnutí dotace neuplatňují, protože nesplňují další podmínky, např. zatížení VDJ. To způsobuje rozdíly a vznik disproporci mezi statistickými údaji (ČUZK) a LPIS (Land Parcel Identification System – registr půdy), který vykazuje Státní intervenční zemědělský fond (SIZF).

Tabulka č. 18 - Statistika půdních bloků ZA a PÚ Ústí nad Labem 1.1.2007

Jedná se o výměru zájmového území Chomutovsko – Ústecké oblasti

Výměra evidované zemědělské půdy	59 735,96 ha
Počet bloků	6 594,00
Průměrná výměra bloků	9,06 ha
Počet uživatelů	326,00
Průměr na uživatele	183,24

(Údaje převzaty ze ZAPU Ústí nad Labem, 2007)
Dle údajů v tabulce č. 18 je evidováno pouze 59 736 ha, což je ve srovnání s údaji Statistické ročenky půdního fondu ČR rozdílný údaj (86 982 ha zemědělské půdy v zájmovém území), jedná se o rozdíl 27 246 ha.

Největší plochy LFA (dle tabulky č. 17) jsou v kategorií HA a to 13 864 ha, jsou to plochy v Krušných horách. Dále je to kategorie Specifické oblasti S, kde je zařazeno 10 768 ha, jsou to pozemky značně svažité a těžko přístupné, největší podíl je v okrese Ústí nad Labem.

Do LPISu je zařazováno pouze území, kde jsou požadovány dotace.

Výměra evidované zemědělské půdy v LFA oblastech, dle LPIS

<table>
<thead>
<tr>
<th>Výměra [ha]</th>
<th>Podíl z výměry ZÚ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 027</td>
<td>40,2</td>
</tr>
</tbody>
</table>

Zdroj: Údaje převzaty ze ZAPU Ústí nad Labem, 2007

Výměra evidované zemědělské půdy v ZÚ a počet bloků, dle LPIS

<table>
<thead>
<tr>
<th>Výměra [ha]</th>
<th>Počet blocků/dílů</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 287,3</td>
<td>6 525</td>
</tr>
</tbody>
</table>

Zdroj: Údaje převzaty ze ZAPU Ústí nad Labem, 2007

4.2 Kvalita půdního fondu

4.2.1 Zátěž zemědělského půdního fondu rizikovými prvky

Tabulka č. 19 - Rizikové prvky v zemědělských půdách v zájmovém území dle měření z let 1990 až 2004 (výluh 2M HNO₃)

<table>
<thead>
<tr>
<th>Prvek</th>
<th>Max. přístupná hodnota podle vyhl. MŽP č. 13/94 Sb.</th>
<th>Průměrný obsah mg kg⁻¹</th>
<th>Počet analyzovaných vzorků</th>
<th>Procento nadlimitních vzorků</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lehká půda</td>
<td>Ostatní druhy půd</td>
<td>Lehká půda</td>
<td>Ostatní druhy půd</td>
</tr>
<tr>
<td>As</td>
<td>4,5</td>
<td>4,5</td>
<td>9,640</td>
<td>5,926</td>
</tr>
<tr>
<td>Be</td>
<td>2,0</td>
<td>2,0</td>
<td>0,814</td>
<td>0,686</td>
</tr>
<tr>
<td>Cd</td>
<td>0,4</td>
<td>1,0</td>
<td>0,433</td>
<td>0,270</td>
</tr>
<tr>
<td>Co</td>
<td>10,0</td>
<td>25,0</td>
<td>4,881</td>
<td>7,701</td>
</tr>
<tr>
<td>Cr</td>
<td>40,0</td>
<td>40,0</td>
<td>4,785</td>
<td>5,891</td>
</tr>
<tr>
<td>Cu</td>
<td>30,0</td>
<td>50,0</td>
<td>20,416</td>
<td>11,361</td>
</tr>
<tr>
<td>Mo</td>
<td>5,0</td>
<td>5,0</td>
<td>0,210</td>
<td>0,105</td>
</tr>
<tr>
<td>Ni</td>
<td>15,0</td>
<td>25,0</td>
<td>3,269</td>
<td>8,774</td>
</tr>
<tr>
<td>Pb</td>
<td>50,0</td>
<td>70,0</td>
<td>31,750</td>
<td>19,462</td>
</tr>
<tr>
<td>V</td>
<td>20,0</td>
<td>50,0</td>
<td>14,209</td>
<td>16,183</td>
</tr>
<tr>
<td>Zn</td>
<td>50,0</td>
<td>100,0</td>
<td>31,022</td>
<td>22,294</td>
</tr>
<tr>
<td>Hg</td>
<td>0,6</td>
<td>0,8</td>
<td>0,184</td>
<td>0,129</td>
</tr>
</tbody>
</table>

Zdroj: UKZUZ Brno 2006

Na podkladě monitoringu půd bylo provedeno vyhodnocení rizikových prvků v Chomutovsko–ústecké oblasti. V porovnání s maximálně přístupnými hodnotami ve Vyhlášce č. 13/94 (k zákonu 334/92 Sb. o ochraně zemědělského půdního fondu) byl významně překročen As, ostatní prvky vykazovaly relativně nízké procento nadlimitních vzorků.

4.2.2 Výsledky agrochemického zkoušení půd v zájmové oblasti

Agrochemické zkoušení půd (AZP) v ČR vychází z legislativních norem a bylo prováděno pravidelně v tříletých intervalech, od roku 1997 je prováděno na zemědělských, ale i lesních půdách v intervalech 6 let. Výsledky publikuje UKZUZ, předává je správním a samosprávným orgánům i vlastníkům pozemků. Výsledky AZP za poslední období jsou uvedeny v tabulce č. 20.
Tabulka č. 20 - Agrochemické vlastnosti zemědělské půdy v zájmovém území dle měření z let 1990 až 2004

<table>
<thead>
<tr>
<th>Obec</th>
<th>Půdní reakce (v % výměry půd)</th>
<th>Obsah přístupného draslíku (v % výměry půd)</th>
<th>Obsah přístupného hořčíku (v % výměry půd)</th>
<th>Obsah přístupného vápníku (v % výměry půd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silně kyselé</td>
<td>Kyselé</td>
<td>Slabě kyselé</td>
<td>Neutrální</td>
</tr>
<tr>
<td>Chomutov</td>
<td>11,68</td>
<td>11,74</td>
<td>32,02</td>
<td>30,00</td>
</tr>
<tr>
<td>Most</td>
<td>5,47</td>
<td>8,48</td>
<td>20,80</td>
<td>20,66</td>
</tr>
<tr>
<td>Teplice</td>
<td>12,47</td>
<td>9,98</td>
<td>34,87</td>
<td>27,96</td>
</tr>
<tr>
<td>Ústí n. Labem</td>
<td>17,35</td>
<td>22,48</td>
<td>44,08</td>
<td>14,71</td>
</tr>
</tbody>
</table>

Zdroj: UKZUZ Brno 2006

Půdní reakce – Výsledky rozborů u orné půdy ukazují, že nejvíce kyselé půdy jsou v okrese Ústí nad Labem, kde 40 % ploch je silně kyselých až kyselých. Přijatelný stav je v okrese Most a to 13 % ploch.

Draslík (K) - Nejvyšší obsah přístupného draslíku v orné půdě, a to u 65 % ploch, je v okrese Most. Nižší obsah má půdy v okrese Ústí nad Labem, jen 40 % vysoké a velmi vysoké.

Hořčík (Mg) – Zastoupení vysoké a velmi vysoké je u hořčíku ve všech okresech. Nejvíce má Chomutov, 67 % ploch.
Vápník (Ca) - U vápníku je nejpřiznivější stav v okrese Most a to 70 % vysoký obsah a velmi vysoký obsah vápníku, další je Chomutov s 66 % ploch. Nízký je v okrese Ústí nad Labem.

4.2.3 Degradace půd

Byla hodnocena půda s ohledem na fyzikální vlastnosti (zhutnění, erozi – viz obr č. 12) a chemickou degradaci půd – viz obr č. 13 (acidifikaci, obsah humusu, zastoupení rizikových prvků) a na podkladě byl zpracován i výsledný degradační model (viz obr č. 14). (Podklady Šarapatka, UP Olomouc)

Obr. č. 12 - Fyzikální degradace půd

![Fyzikální degradace půd](image1)

Obr. č. 13 - Chemická degradace půd

![Chemická degradace půd](image2)
4.2.4 Ohrožení půdního fondu erozí

Projevy půdní eroze záleží zejména na klimatických, půdních a hydrologických poměrech, svažitosti a celkovém charakteru krajiny v zájmovém území a způsobu jejího využití.

4.2.5 Vodní eroze

Vodní eroze na zemědělské i nezemědělské půdě je způsobena celou řadou faktorů a interakcí jejich vzájemného působení v prostoru a čase.

K hlavním příčinám eroze patří vysoké procento zornění, organizace pozemků včetně jejich velikosti, nevhodný způsob hospodaření na půdě, ale i obdělávání pozemků ve vztahu k vrstevnicím, nevhodná skladba plodin pěstovaných na svažitých pozemcích (s nízkým protierozním účinkem) a nedostatečně dlouhý rostlinný kryt na pozemcích v průběhu roku.

Vedle svažitosti pozemků (délky a sklonu svahu) má na projevy eroze vliv množství dešťových srážek a přívalové deště ve sledovaném území.

Podle hodnocení náchylnosti zemědělských půd k vodní erozi (podle VÚMOP) je na základě půdních a morfologických podmínek potenciálně ohroženo vodní erozí 42 % půd.
4.2.6 Vodní eroze v ČR

Graf č. 17 - Vodní eroze zemědělských půd ČR

Zdroj: VÚMOP

V těžebních oblastech jednotlivé kroky těžby (skrývka pozemků, narušená krajinna, vznik hald) příslušné operace a důsledky těžby pak zesilují obvyklé proerozcní faktory.

Tabulka č. 21 - Potenciální ohrožení zemědělských půd vodní erozí v zájmovém území (%)

<table>
<thead>
<tr>
<th>Vodní eroze</th>
<th>Chomutov</th>
<th>Most</th>
<th>Teplice</th>
<th>Ústí n. L</th>
<th>ČR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silná a velmi silná</td>
<td>15,5</td>
<td>15,6</td>
<td>26,5</td>
<td>45,0</td>
<td>10,0</td>
</tr>
<tr>
<td>Extrémní</td>
<td>18,0</td>
<td>17,3</td>
<td>26,2</td>
<td>40,0</td>
<td>13,9</td>
</tr>
<tr>
<td>Spolu</td>
<td>33,5</td>
<td>32,9</td>
<td>52,7</td>
<td>85,8</td>
<td>23,9</td>
</tr>
</tbody>
</table>

Zdroj: VÚMOP

4.2.7 Větrná eroze

Tabulka č. 22 - Potenciální ohroženost zemědělských půd větrnou erozí

<table>
<thead>
<tr>
<th>Kategorie ohrožení půd</th>
<th>Neohrožené</th>
<th>Náchylné k ohrožení</th>
<th>Mírně ohrožené</th>
<th>Ohrožené</th>
<th>Silně ohrožené</th>
<th>Nejohroženější</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procentické zastoupení</td>
<td>77,5</td>
<td>9,7</td>
<td>5,7</td>
<td>5,4</td>
<td>1,8</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Zdroj: VÚMOP
4.3 Zhodnocení lesního půdního fondu v zájmové oblasti i v České republice

4.3.1 Lesní plochy

Vývoj podílu výměry zemědělské a lesní půdy v ČR je zachycen od roku 1966 v tabulce č. 23 a znázorněn na grafech č. 18, 19.

Tabulka č. 23 - Vývoj stavu lesní půdy v zájmovém území

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomutov</td>
<td>1 454</td>
<td>429</td>
<td>196</td>
<td>34 477</td>
<td>4,2</td>
</tr>
<tr>
<td>Most</td>
<td>1 038</td>
<td>286</td>
<td>88</td>
<td>15 495</td>
<td>6,7</td>
</tr>
<tr>
<td>Teplice</td>
<td>1 295</td>
<td>766</td>
<td>129</td>
<td>17 302</td>
<td>7,5</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>702</td>
<td>203</td>
<td>155</td>
<td>12 677</td>
<td>5,5</td>
</tr>
<tr>
<td>Z ú celkem</td>
<td>4 489</td>
<td>1 684</td>
<td>568</td>
<td>79 951</td>
<td>5,6</td>
</tr>
</tbody>
</table>

Zdroj: Statistické ročenky půdního fondu České republiky

Zemědělská půda na území ČR vykazuje dlouhodobý výraznější trend poklesu. Úbytek je způsoben především převody do ostatních ploch (výstavba) a rovněž i do lesního půdního fondu.

Graf č. 18 - Vývoj zemědělské půdy v ČR od roku 1966 (v hektarech)

Zdroj: Statistické ročenky půdního fondu České republiky
Graf č. 19 - Vývoj lesních pozemků v ČR od roku 1966 (v hektarech)

Zdroj: Statistické ročenky půdního fondu České republiky

Přírůstky lesní půdy za období 1960-2006 cíní v zájmovém území pouhých 5,6 % (viz graf č. 20)

Graf č. 20 - Vývoj lesní půdy v zájmovém území od roku 1960

Zdroj: Statistické ročenky půdního fondu České republiky

4.3.2 Charakteristika půd v Krušných horách

Krušné hory patří k oblastem s největší koncentrací výzkumných aktivit v ČR obecně a toto platí i o půdním výzkumu. První a obsáhlé šetření o chemických změnách v půdě vlivem imisí bylo provedeno v souvislosti s hledáním příčin chřadnutí a odumírání smrkových porostů v Krušných horách z roku 1947. Z konce 70. a počátku 80. let byl dále získán rozsáhlý materiál o chemismu i biologických vlastnostech různých typů půd horských poloh východní i západní části Krušných hor a výsledky byly publikovány v řadě dílčích prací a souborných publikací. Intenzivní výzkum probíhal i v 90. letech a Krušné hory jsou
stále významným objektem výzkumu i dnes. Důvodem jsou přetrvávající problémy nepříznivého stavu lesů a omezené možnosti lesního hospodářství.

Celkem bylo v rámci výzkumných prací 444 odběrných míst (z toho 100 odběrových míst v náhradních porostech). Vzorky byly odebírány jako směšné vzorky z organominerálního horizontu z hloubky 2 – 5 cm - ve výsledcích označen jako A a navazující minerální horizont do hloubky 30 cm ve výsledcích označen jako B.

Pro hodnocení datových souborů byly použity běžné postupy statistické analýzy (výpočet jednoduchých statistik, lineární regresní analýza, analýza variance), pro speciální případy vybrané postupy mnohorozměrné statistiky (metoda hlavních komponent - PCA) a pro prostorové vyjádření geostatistické metody.

4.3.3 Prostorové rozložení hodnot půdních charakteristik humusových horizontů

porosty, naopak nejnižší hodnoty těchto ukazatelů jsou zejména ve střední části, kde byla provedena buldozerové příprava.

Obdobný trend měly obsahy dusíku, zřejmě z důvodu jeho silné vazby na organickou hmotu.

4.3.4 Perspektivy vývoje lesních půd a nápravná opatření

Na základě dlouhodobého cíleného výzkumu došli odborníci k následujícím výsledkům. Ani přes radikální snížení depozice síry nelze předpokládat rychlou nápravu stavu lesních půd (zvýšení neutralizační kapacity). Relativně výrazné snížení kyselé zátěže odvozené od oxidu sířičitého bude eliminováno vysokou depozicí oxidů dusíku. To povede k dalšímu prohlubování procesů acidifikace a eutrofizace.

Pro stav lesních půd v oblasti bude dále charakteristické udržování pH nadložního humusu i povrchových vrstev minerální půdy na nízkých hodnotách. Bude docházet k pomalému, ochuzování o významně biogenní prvky, zejména vápník a hořčík, ke zvyšování obsahu toxického hliníku, zvyšování obsahu dusíku a k projevům eutrofizace ekosystému a ke zvyšování obsahu rizikových prvků např. olova v nadložním humusu.

Dalekosáhlá nutriční degradace půdy ovlivňující vitalitu porostů v náhorní partii Krušných hor bude nadále omezovat možnosti lesního hospodářství při rekonstrukci porostů a výsadby.

Dosavadní postupy biologické a chemické meliorace částečně zmírnily negativní vlivy kyselé depozice a v současných úvahách o dalších možnostech lesnického hospodaření budou tato opatření nabývat na významu. Zvýšení resilience (tj. schopnost obnovovat svoje síly po jejich vyčerpání, nebo autoregulační schopnost vrátit se z narušení do původního stavu) lesních ekosystémů bude dlouhodobým procesem a bude vyžadovat další intervensi v podobě nápravných opatření.

S ohledem na nízký stupeň resilience lesních ekosystémů (včetně lesních půd) může docházet i při relativně nízkém působení stresových faktorů (např. klimatické výkyvy) k náhlym epizodám poškození lesních porostů.

Nápravná opatření by měla zahrnovat:

- opatření na minimalizaci zakyselování uvnitř ekosystému (hustota porostů, vyloučení stejnověkých porostů, odpovídající intenzita výchovných zásahů),
- biologickou melioraci – využití přípravných dřevin,
- vápnění a kompenzační hnojení,
• uplatňování přípravy půdy při zalesňování (včetně hloubkového zapracování melioračních hmot do půdy),
• vyloučení všech druhů příprav půdy vedoucí k odstranění humusové vrstvy.

Půdy v oblasti Krušných hor jsou v různé míře ovlivněny znečištěním ovzduší a depozicemi, změnou charakteru a struktury lesních porostů, mechanickou přípravou půdy pro zalesňování a různými postupy chemické meliorace. Tyto faktory vedou k vysoké variabilitě půdních vlastností a jejich slabé prostorové závislosti, což komplikuje hodnocení jejich prostorového rozložení.

Resilience lesních ekosystémů a produkční úroveň půd v oblastech náhradních porostů jsou i přes pozitivní vliv chemické a biologické meliorace na nízké úrovně.

V oblasti východního Krušnohoří jsou půdní podmínky ve srovnání se západním Krušnohořím přiznivější a v současnosti zde nedochází k akutnímu projevu nedostatku živin. Přesto zde nelze považovat situaci za stabilizovanou a půdní vlastnosti mohou být do budoucna zhoršovány stále, vysokou depozici kyselých látek a dusíku (ta se bude s odrůstáním porostů zvyšovat) a zvýšenými nároky mladých lesních porostů na živiny. Tento vývoj bude nutné sledovat a v rozumné míře uplatňovat preventivní opatření biologické a chemické meliorace.

V oblasti jihozápadního Krušnohoří se odlišuje od střední a severovýchodní částí. V této oblasti je v současné době stav půd velmi vážný (nízké pH, nízké nasycení sorpčního komplexu bazickými prvky, chudší podloží, vyšší depozice podsoviskem a dusíku, ta se bude s odrůstáním porostů zvyšovat) a zvýšenými nároky mladých lesních porostů na živiny. Tento vývoj bude nutné sledovat a v rozumné míře uplatňovat preventivní opatření biologické a chemické meliorace.

Oblast jihozápadního Krušnohoří se odlišuje od střední a severovýchodní částí. V této oblasti je v současné době stav půd velmi vážný (nízké pH, nízké nasycení sorpčního komplexu bazickými prvky, chudší podloží, vyšší depozice podsoviskem a dusíku, ta se bude s odrůstáním porostů zvyšovat) a zvýšenými nároky mladých lesních porostů na živiny. Tento vývoj bude nutné sledovat a v rozumné míře uplatňovat preventivní opatření biologické a chemické meliorace.
Dosavadní postupy biologické a chemické meliorace částečně zmírnily negativní vlivy kyselé depozice a v současných úvahách o dalších možnostech lesnického hospodaření budou tato opatření nabývat na významu. Výsledkem projektu jsou návrhy melioračních opatření v rámci samostatného realizačního výstupu.

(zpracováno z výsledků projektu Lesnické hospodaření v imisních oblastech Krušných hor, Lesy ČR, 302 s., Opočno 2007)

4.4 Zhodnocení rekultivací v zájmové oblasti

4.4.1 Vliv antropogenních faktorů, zvláště těžby na životní prostředí

Rozsáhlá povrchová těžba štěrků a hlavně hnědého uhlí vedla k zásadnímu narušení odtokových poměrů, provázených erozi půd, erozními smyvy půdních částic, k projevům větrné eroze a narušení biodiverzity, v důsledku snížení počtu druhů rostlin a živočichů a četnosti jejich zastoupení v zemědělské krajině.

Je možné shrnout, že těžba nerostných surovin a jmenovitě hnědého uhlí je provázena znehodnocováním produktivity krajiny, její hygienické a estetické hodnoty. Dochází zejména k:

- narušení půdních profilů a devastaci půdního fondu,
- zásadním narušením hydrologických podmínek,
- devastaci vegetace,
- zhoršení kvality ovzduší (vysokou prašností aj.),
- změnám celkové architektury krajiny (negativní ovlivňování výskytkami),
- ničení lokalit výskytu ohrožených a zvláště chráněných organismů a stanovišť.

Na úpatí Krušných hor se nachází rozsáhlé plochy ovlivněné antropogenní činností při povrchové těžbě hnědého uhlí (jednak plochy vlastních půdních jam, jednak plochy vnějších výsypk).

4.4.2 Vliv těžby na krajinu a stav rekultivací

Severočeská hnědouhelná pánev je největší a těžebně nejvýznamnější hnědouhelnou pánev v České republice. V současnosti zaujímá plochu zhruba 14 000 ha (obr. č. 15). Dosud se v SHP vytvářilo více jak 3,5 mld. tun uhlí, z toho 2,58 mld. tun lomové. Technologie lomové těžby je závislá na nutnosti přemístit z dobývacího prostoru nadložní horniny zprvu na vnější výsypku a později na výsypku vnitřní lokalizovanou ve vyuhleném prostoru. Vzhledem
ke skrývkovému poměru 1:3 až 1:4 to znamená na 1 t uhlí odklidit 3 - 4 m³ (tj. 6 - 8 t) nadložních hornin, v případě SHP se jedná o terciální jílovce a jíly, částečně o terciální písky či hlinité kvartérní horniny.

Přehled o provádění rekultivací v Severočeské hnědouhelné pánvi (tab. č. 24).

Tabulka č. 24 - Ukončené rekultivace v SHP do r. 2004 v ha – orientační údaje

<table>
<thead>
<tr>
<th>V ha</th>
<th>Zemědělské</th>
<th>Lesnické</th>
<th>Hydrické</th>
<th>Ostatní</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ústecko</td>
<td>1197,1</td>
<td>613,2</td>
<td>20,3</td>
<td>43,3</td>
<td>1873,9</td>
</tr>
<tr>
<td>Teplicko – Bílinsko</td>
<td>571,8</td>
<td>1085,0</td>
<td>89,6</td>
<td>141,6</td>
<td>1888,0</td>
</tr>
<tr>
<td>Mostecko</td>
<td>1268,2</td>
<td>2269,9</td>
<td>121,2</td>
<td>1093,6</td>
<td>4752,9</td>
</tr>
<tr>
<td>Chomutovsko</td>
<td>797,1</td>
<td>105,0</td>
<td>21,4</td>
<td>58,0</td>
<td>981,5</td>
</tr>
<tr>
<td>SHP celkem</td>
<td>3834,2</td>
<td>4073,1</td>
<td>252,5</td>
<td>1336,5</td>
<td>9496,3</td>
</tr>
</tbody>
</table>

(Ročenka životního prostředí Ústeckého kraje, vydal Krajský úřad Ústeckého kraje 2004).

Do konce sledovaného období je v SHP ukončeno 9 496,3 ha rekultivací. Dominují rekultivace lesnické 42,9 % a zemědělské 40,4 %, které celkem tvoří 83,3 %.

Tabulka č. 25 - Rekultivace v SHP – předpoklad ukončení v období 2004-2020 v ha

<table>
<thead>
<tr>
<th>V ha</th>
<th>Zemědělské</th>
<th>Lesnické</th>
<th>Hydrické</th>
<th>Ostatní</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ústecko</td>
<td>59,8</td>
<td>674,4</td>
<td>257,3</td>
<td>146,8</td>
<td>1138,3</td>
</tr>
<tr>
<td>Teplicko – Bílinsko</td>
<td>339,6</td>
<td>779,8</td>
<td>28,5</td>
<td>436,3</td>
<td>1584,2</td>
</tr>
<tr>
<td>Mostecko</td>
<td>568,1</td>
<td>1468,1</td>
<td>411,0</td>
<td>1311,2</td>
<td>3758,4</td>
</tr>
<tr>
<td>Chomutovsko</td>
<td>801,2</td>
<td>799,9</td>
<td>0,1</td>
<td>256,4</td>
<td>1857,6</td>
</tr>
<tr>
<td>SHP celkem</td>
<td>1768,7</td>
<td>3722,2</td>
<td>696,9</td>
<td>2150,7</td>
<td>8338,5</td>
</tr>
</tbody>
</table>

(Ročenka životního prostředí Ústeckého kraje – vydal Krajský úřad Ústeckého kraje, 2004)

Významné je zastoupení antropogenních půd vyskytujících se zejména v důsledku těžby uhlí a následných rekultivací (viz obr. č. 7).

4.4.3 Problematika bioalginátů

V rekultivovaných oblastech byl zahájen provozní pokus s bioalgináty. Jedná se o hodnocení sazenic lesních dřevin. Lze předpokládat, že bioalgináty urychlují životní funkce organismů, které jimi byly ošetřeny, zvyšují fotosyntézu a zkvalitňují látkovou výměnu.
Mobilizace vitálních prvků a navíc i stimulace rozvoje kořenových systémů pro-
střednictvím aplikovaných biolaginátů má své poziční opodstatnění a jedno-
začný přínosný efekt hned v několika směrech:

- jednak se podílejí na dosažení kvalitnějšího celkového vývoje zdra-
vých, odolných a funkčně plnohodnotných rostlin (sazenic ap.);
- dále mají významný vliv na dosažení dokonalejšího, hustšího a hlubší-
ho kořenového zápoje v půdě a následně i na dokonalejší druhotné
zpevnění půdy, zejména ve svažitých pozicích a inundovaných úze-
mích;
- navíc přítomnost bioalginátů v okolí kořenových vlásečnic může
ochranně podobně jako šedá huminová kyselina, vybavená pufrovací
dispozicí na rozvíjející s kořeny;
- bioalgináty jsou schopny na sebe navázet až 350 hm otnostní násobek
vody a tím vytvořit protrahované vlhkostní depo nejenom pro samotný
pro kořenový systém ošetřené rostliny, ale pro celý ošetřený rostlinný
organismus. Fungují zde kromě toho i jako fokální prvek akumulace
půdní vláhy, což se uplatňuje ještě také i na principu permanentně na-
vozované iontové výměny;
- kromě toho – jako základní efekt – vykazují bioalgináty již při jedno-
rázovém ošetření schopnost bezpečně podmínit 30 – 50 % nárůst koře-
nové hmoty u ošetřených rostlin nebo kultur;
- zcela mimořádný význam lze přikládat stimulativnímu a podpůrnému
vlivu bioalginátů při budování a obhospodařování kořenových čistěn
vod, jejichž účinnost, životnost i kapacitní dispozice bioalgináty zře-
telně podporují. Podle zahraničních zkušeností bioalgináty – za speci-
fických podmínek důkladné aerace – zvyšují jejich účinnost i při de-
kontaminaci vod ropnými látkami;
- mimořádný význam mají biolagináty při realizaci programů výsadby
stromových i keřových dřevin, zejména pokud tato probíhá v nepříznivých půdně-klimatických podmínkách;
- širokou škálu jejich funkcí v zpracování lze ocenit zejména v posledních
létech, provázených subtropickými vedry a přískušky. Zde biolagináty
prokazují zcela mimořádné účinky ve smyslu chronické rezervace
půdní vlhkosti v jejich okolí a vytvoření tak disponibilních rezerv pro
nejblížší rostliny;
- předmětem aktuálního výzkumu je sanativní aplikace bioalginátů u
vzrostlých – zejména pak vzácných nebo pozičně významných – stro-
mů, vykazujících syndrom náhlého zhoršení vitálních dispozic.
S podrobnějšími údaji je možno se seznámit ze studie Vostoupal B. a kol., která je umístěná na www stránkách projektu.

4.5 Využití půd zemědělstvím - stručné zhodnocení vybraných problémů zemědělství v zájmové oblasti a v ČR

Tabulka č. 26 - Rozsah a podíl skutečně využívané zemědělské půdy v poštížené oblasti (v ha)

<table>
<thead>
<tr>
<th>Celkem (v ha)</th>
<th>Zemědělská půda</th>
<th>Zemědělská půda využívaná</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v ha</td>
<td>v % z celku</td>
</tr>
<tr>
<td></td>
<td>v % z celku</td>
<td>v % ze zem. půdy</td>
</tr>
<tr>
<td>v ha</td>
<td>z toho orná půda</td>
<td>v ha</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Chomutov</td>
<td>95 351</td>
<td>39 250</td>
</tr>
<tr>
<td>Most</td>
<td>46 718</td>
<td>13 662</td>
</tr>
<tr>
<td>Teplice</td>
<td>46 913</td>
<td>16 089</td>
</tr>
<tr>
<td>Ústí n. L.</td>
<td>40 445</td>
<td>18 462</td>
</tr>
<tr>
<td>Celkem</td>
<td>229 427</td>
<td>87 463</td>
</tr>
</tbody>
</table>

(Zdroj: dle údajů KAK Most 2005)

Údaje o využívání zemědělské půdy udávané Krajskou agrární komorou na podkladě LPIS a šetření se liší od Statistických ročenek půdního fondu.

Za účelem orientačního vyhodnocení struktury pěstovaných plodin na orné půdě byla z dostupných statistických údajů zpracována tab. č. 27.
Tabulka č. 27 - Orientační zastoupení hlavních skupin plodin pěstovaných na orné půdě v % (údaje z r. 2005)

<table>
<thead>
<tr>
<th></th>
<th>Chomutov</th>
<th>Most</th>
<th>Teplice</th>
<th>Ústí n. L.</th>
<th>Zájmová oblast</th>
<th>Průměr ČR z o.p.(orient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obiloviny</td>
<td>58,8</td>
<td>62,6</td>
<td>63,7</td>
<td>35,8</td>
<td>59,5</td>
<td>52,6</td>
</tr>
<tr>
<td>Luskoviny</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td>0,2</td>
<td>0,9</td>
</tr>
<tr>
<td>Okop/Bram.</td>
<td>0,2</td>
<td>0,1</td>
<td>0,8</td>
<td>1,3</td>
<td>0,5</td>
<td>3,8/1,4/</td>
</tr>
<tr>
<td>Olejniny</td>
<td>19,6</td>
<td>16,7</td>
<td>17,8</td>
<td>2,9</td>
<td>18,0</td>
<td>12,5</td>
</tr>
<tr>
<td>Picniny víc.</td>
<td>7,8</td>
<td>4,5</td>
<td>2,7</td>
<td>6,6</td>
<td>6,1</td>
<td>7,3</td>
</tr>
<tr>
<td>Picniny jed.</td>
<td>4,0</td>
<td>8,0</td>
<td>0,3</td>
<td>8,8</td>
<td>4,4</td>
<td>9,1</td>
</tr>
<tr>
<td>Zelenina</td>
<td>0,5</td>
<td></td>
<td>1,0</td>
<td>1,3</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Ostatní, ne-vykázané</td>
<td>8,8</td>
<td>8,1</td>
<td>13,7</td>
<td>43,3</td>
<td>10,8</td>
<td>13,3</td>
</tr>
</tbody>
</table>

(údaje za ČR převzaty z osevních ploch vykázaných v publikaci „Zelená zpráva o stavu zemědělství ČR“ za rok 2004)

Na orné půdě v celé zájmové oblasti dominují obiloviny a olejniny. Jejich zastoupení je celkově o 12,4 % vyšší než je v průměru v ČR. Naproti tomu jsou minimálně zastoupeny okopaniny a v menší míře i picniny, což souvisí s výrazným poklesem živočišné produkce v zájmové oblasti.

4.5.1 Vybrané problémy zemědělství v chomutovsko-ústecké oblasti

Klesá podíl zemědělství na HDP, klesá zaměstnanost, celkový rozměr zemědělství se snižuje. Zejména se snížil objem živočišné produkce, výrazně se snížily stavy hospodářských zvířat. Tato tendence je shodná s trendy v celé ČR, Ústecký kraj a zejména Chomutovsko – ústecká oblast vykazuje největší poklesy a nejnižší intenzitu zemědělské výroby z celé ČR.

Vývoj stavů hospodářských zvířat na okresech Chomutov (levý horní), Most (pravý horní), Teplice (levý dolní), Ústí (pravý dolní) ukazuje obr. č. 15.
Obr. č. 15 -

Na druhé straně redukce rozměru zemědělství přinesla mezi roky 1990 a 2000 v podkrušnohorských okresech přírůstek ekologické hodnoty území (viz kapitola 6).

4.6 Problematika disparit v oblasti půdního fondu

Na analytickou studii zaměřenou na půdní fond v modelové oblasti navazuje část zabývající se problematikou regionálních disparit v oblasti půdy jako složky životního prostředí a výrobního prostředku v zemědělství ve sledovaném regionu.

Oblast ve druhé polovině 20. století byla typickou průmyslovou krajinou, z důvodu nejvyššího znečištění životního prostředí v ČR byla součástí mezinárodního „Černého trojúhelníku“ (Podkrušnohoří, Slezsko, Sasko). Průmyslový
rozvoj sebou přinesl i vysokou koncentraci obyvatel v Severočeské hnědouhelné pánvi, nerovnoměrné rozmístění zdrojů pracovních sil, vysokou migraci obyvatel, zhoršení zdravotního stavu obyvatelstva, urbanizaci, hustou síť dopravních spojů a technické infrastruktury.

Vzhledem k disparitám v Podkrušnohorském, v oblasti průmyslové krajiny a území po těžbě uhlí, se jeví jako nanevšem potřebné řešit jejich snížení a odstranění v rámci podpory regionálního rozvoje, navrhovat nástroje regionální politiky, které by mohly přispět k jejich redukci či odstranění.

Konkrétní analýza nerovností – disparit – v oblasti Podkrušnohorském v porovnání s ostatním územím ČR v oblasti půdního fondu (lesních a zemědělských půd, ostatních ploch a kvalitativních ukazatelů) a něj navazující zemědělské produkce, může přinést celou řadu podnětů využitelných jak pro jejich snížení či odstranění, posloužit jako dílčí podklad pro zefektivnění regionální politiky a zejména při zpracování návrhů metodických postupů pro řešení revitalizace průmyslové krajiny. Jedná se zejména o následující rozdílnosti:

- odlišná struktura půdního fondu v chomutovsko–ústecké oblasti v porovnání s Ústeckým krajem a ČR, nízké zastoupení zemědělské půdy v porovnání s ostatním územím ČR, vysoké úbytky zemědělské půdy za období posledních cca 60 let,
- nízké % zornění půdy v zájmové oblasti ve vazbě na kvalitu půdy, vysoké úbytky zemědělské půdy za období posledních cca 60 let,
- nízká výměra zemědělské a orné půdy na 1 obyvatele zájmové oblasti (pouze 1/3) oproti zbytku Ústeckého kraje a zejména proti celostátnímu průměru,
- výrazný nárůst kategorie „Ostatní plochy“ (22,5 %) ve srovnání s ostatními okresy Ústeckého kraje a ČR (8,7 %),
- nesoulad mezi evidencí zemědělské a orné půdy vykazované Českým statistickým úřadem a LPISem (Land Parcel Identification System – uživatelské bloky za účelem dotací, v pánevních okresech rozdíl u zemědělské půdy 46,5 %),
- vyšší kyselost (pH) půd dle zjišťování při agrochemickém zkoušení půd,
- degradace půd,
- vyšší ohrožení půdního fondu vodní erozí v zájmovém území (potenciální ohrožení silnou a extrémní vodní eroze celkem na 47 % zemědělské půdy) než je průměr ČR (23,9 %),
- negativní vývoj kvality lesních půd na Krušných horách v důsledku dlouhodobé emisní zátěže lesních porostů i lesních půd,
- devastace půdy v důsledku těžby hnědého uhlí velkolomovým způsobem (rekuvertivováno 9 496 ha, předpoklad zahájení dalších rekultivací na cca 8 300ha),
- v oblasti zemědělské výroby lze kvalifikovat jako disparitu nesoulad mezi produkcí ze zemědělské půdy (zejména z trvalých travních porostů) a spoluprodukcí vyprodukované biomasy hospodářskými zvířaty (v chovu skotu či ovcí),
- v důsledku snížení intenzity živočišné výroby se výrazně omezuje produkce statkových hnojiv a v důsledku toho dochází ke snížení organické hmoty v půdě, což se negativně projeví ve snížení úrodnosti půd.

Všechny tyto výše uvedené disparity byly podrobně analyzovány v rámci zpracované studie.

Kromě těchto přímo analyzovaných výše uvedených disparit z oblasti půdního fondu v regionu Podkrušnohoří lze uvést či zdůraznit ochranu půdního fondu před dalšími faktory, které mají negativní vliv nejen ve sledovaném regionu, ale i na celém území státu či Evropy, na které bude vhodné v budoucnu se zaměřit:

globálních (velkoplošných) faktorů lze i pro oblast Podkrušnohoří uvést:
- acidifikaci půdy kyselými dešti,
- aridizaci (vysušování) půdy v důsledku klimatických změn,

z regionálních
- další formy degradace půd v důsledku činnosti člověka (např. okolí skládek, stavební odpad, okolí průmyslových podniků, brownfieldy),
- zhnutění půd,
- intoxikace půd pesticidy a hnojivy,
- špatná agrotechnika (únava půd při monokulturním obdělávání, nedodržování střídání plodin),
- ropná znečištění.

Z provedené bilance půdy v ČR vyplývá, že půdní zdroje jsou v ČR velmi omezené a vyžadují ochranu. Péče o půdní fond je obecně považována za měřítko vyspělosti společnosti.
Doporučujeme proto ochranu zemědělského půdního fondu v zájmové oblasti zaměřit na:

- kvantitativní ochranu
- udržení kvality.

Dlouhodobě dochází ve sledovaném regionu k plošnému úbytku zemědělského půdního fondu. I když po r. 1990 v důsledku útlumu zemědělské výroby je přehodnocováno využívání zemědělské půdy, přesto nelze podceňovat nešetřné zacházení s půdou, neefektivní zábory v souvislosti s výstavbou či těžbou nerostných surovin. K úbytku zemědělské půdy dochází nejen s ohledem na celkovou výměru, ale dochází i k poklesu výměry na 1 obyvatele.

Pro udržení kvality půdního fondu je třeba se zaměřit zejména na:

- omezení degradace půdy v důsledku jejího ohrožení erozními procesy,
- udržení příznivého vodního režimu v půdě,
- eliminování negativních důsledků znečištěných vod (zpravidla závlahových) na půdu,
- snížení negativního vlivu chemizace zemědělství na půdu (vliv aplikace průmyslových hnojiv, pesticidů, průmyslových kompostů apod.),
- snížení nepříznivého vlivu průmyslových imisí na půdu, (zejména lesní v Krušných horách),
- omezení havárií s negativními účinky na půdní fond.

Pro ochranu půd v Podkrušnohoří doporučujeme formulovat soubor opatření, která by byla zaměřena zejména na:

- ochranu úrodností půdy: (jde zejména o fyzikální vlastnosti půdy, půdní organickou hmotu, obsah živin v půdě, půdní reakci a biologickou aktivitu půdy)
- ochranu před fyzikální degradací: (tj. eroze, zhutnění, úbytky vrchních vrstev půdy, prohlubování ornice, ochrana rašelinových půd)
- ochranu před znečištěváním půdy a jeho následky: (znečištění půd hnojivy, agrochemikáliemi a melioračními hmotami, znečištění půd kalý a sedimenty, znečištění půd organickými hnojivy a komposty, znečištění závlahovými vodami, znečištění půd komunálními odpady, znečištění půd odpady ze žump a septiků, znečištění ropnými látkami)
- úpravu vodního a vzdušného režimu půd: (odvodnění, závlahy, fyzikální, chemické a biologické meliorace půd)
• **odnětí zemědělské půdy ze z. půdního fondu** (bez narušení organizace zemědělského půdního fondu, jeho využití a funkce, v ekologické stabilitě krajiny, zvlášt chránit půdy nejlepší bonity, provádět skrývku ornice při záborech a pod)

• **specifické soustavy hospodaření na půdě** (u půd se zvláštními režimy hospodaření – ochranně, ohrožené)

• **a další vybraná opatření** (rozšířit ekologické zemědělství, systém trvale udržitelného zemědělství využívající technologie, které minimalizují poškozování životního prostředí, pozemkové úpravy - směrující k racionálnímu uspořádání vlastnictví pozemků spojenému s ochranou životního prostředí a tvorbou ÚSES, monitoring vývoje vlastností půd ČR a novelizovat zákony k ochraně půdního fondu).

4.7 Závěr

Analýza půdního fondu v modelové oblasti vychází z plánu aktivit (A402) projektu WD 44-07-1 „Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří“. Cílem bylo provést vyhodnocení jednotlivých kategorií půdního fondu se zvláštním zaměřením na kategorii ostatních ploch. V předkládané zprávě byly zpracovány podrobné analýzy:

- **Zhodnocení půdního fondu v zájmových okresech a provedeno srovnání s údaji za Ústecký kraj a ČR dle kategorií. Zvláštní pozornost byla věnována problematice LFA.**

- **Kvalita půdního fondu se zřetelem na zátěž zemědělského půdního fondu rizikovými prvky, zhodnocení AZP v zájmové oblasti, zabývá se i problematikou fyzikální a chemické degradace půd. Zvlášť je analyzováno území s ohledem na ohrožení půdního fondu erozí včetně možných realizací návrhů protierozní ochrany. Kvalitu hospodaření na půdě ovlivňuje i tvar a velikost pozemků. Analýza se proto zabývá i problematikou pozemkových úprav.**

- **Zhodnocení lesního půdního fondu vycházelo jednak ze statistických údajů a dále z projektu Lesnické hospodaření v imisní oblasti Krušných hor (Slodičák a kol. kolektiv, Lesy ČR, 2007). Lesní půda je zastoupena i díky lesnické rekultivaci nad průměrem kraje i ČR. Zhabnocení lesního půdního fondu úzce souvisí problematika Krušných hor, která má svoje specifikou.**

- **Zhodnocení rekultivací v chomutovsko-ústecké oblasti uvádí problematiku antropogenní zátěže a vlastní vývoj rekultivací do roku 2004 a výhled do roku 2020. Součástí je i informace o pokusu s bioalgínaty.**
- Využití půd zemědělstvím – stručné zhodnocení vybraných problémů zemědělství v zájmové oblasti a v ČR uzavírá problematiku půdního fondu s ohledem na využívání krajiny rostlinnou a živočišnou produkci. Zabývá se i vývojem zemědělství v této oblasti v druhé polovině 20. století a upozorňuje na některé disparity.

- Na podkladě identifikace a analýzy disparit v oblasti půdního fondu byl formulován soubor opatření pro kvantitativní a kvalitativní ochranu půdního fondu jako dílčí podklad pro zefektivnění regionální politiky a zejména při zpracování návrhů metodických postupů pro řešení revitalizace průmyslové krajiny.
5 Vodní režimy krajiny v severních Čechách

5.1 Hydrologicko-ekologická charakteristika vodního režimu zájmové oblasti s důrazem na nově vznikající jezera

Na území Severočeské hnědouhelné pánve a Sokolovské pánve vzniklo v průběhu 20. století povrchovou těžbou hnědého uhlí celkem osm velkých důlních prostorů. Tyto důlní prostory po sobě zanechávají rozsáhle zbytkové jámy. Pro rekultivaci těchto zbytkových jam byla navržena hydrická varianta, tedy jejich zatopení vodou.

Rekultivace lomu Chabařovice je první uskutečněnanou hydrickou rekultivací velké zbytkové jámy po povrchové těžbě hnědého uhlí, která dospěla do fáze, kdy je zbytková jáma zaplavována vodou (PKÚ, 2007). Zatopením zbytkových jam vzniknou plošné velká a hluboká jezera, která budou mít velmi významný vliv na tvář krajiní celých severních Čech. Jezera i jejich okolí budou mít široké spektrum funkcí a využití. Budou biotopem vodních a mokřadních organismů, významnými prvky v krajině a v systémech ekologické stability, strategickou zásobou vody, lokalitami sportovního rybolovu, rekreačními oblastmi i místem pro rozvoj podnikání a služeb.

Aby jezera plnila všechny tyto funkce, musí mít voda v nich dobrou kvalitu. Ta je v případě jezera Chabařovice ohrožována vyšším obsahem živin (především fosforu), které se do jezera dostávají ve vodě z pírů. Vysoký obsah živin by ve vodě vedl k eutrofizaci a následnému rozvoji fytoplanktonu (společenstva řas a sinic), což by mělo negativní dopady na kvalitu vody.

Fytoplankton může být redukován zooplanktonem, především velkými perlokovými rodu Daphnia. Dostatečně vysoká populace zooplanktonu může existovat v prostředí, kde je nízká populace hustota planktonofágních ryb, především čeledí krapovitých (Cyprindae). Takový stav byl ve jezere Chabařovice v prvních letech zatápění. Společenstvo planktonofágních ryb se ale rozvíjí a získává významnou úlohu v dalším vývoji kvality vody ve jezere. Jedním z faktorů, který přispívá k rozvoji společenstva planktonofágních ryb je i předpokládaný drift plůdků a juvenilních ryb těchto druhů přítoky do jezera. Populace planktonofágních ryb jsou regulovány rybami piscivorními (dravými), kterým slouží jako po-
trava. Na jezeře Chabařovice se aplikují biomanipulační opatření, které mají za cíl posílit společenstvo dravých ryb na úkor ryb planktonofágů.

5.1.1 Faktory působící na kvalitu vody v jezerech

Jezera zbytkových jam po povrchové těžbě hnědého uhlí se liší od toků, rybníků a údolních přehrad (zejména hloubkou a průtokem). Mají také velké zdržení vody, a to desítky až stovky let Regulaci přítoku a odtoku je možno ovlivňovat chemické složení vody v jezerech. Voda v jezeru postupně mění své fyzikální, chemické a biologické vlastnosti. Vlastnosti vody v nádrži se mění ve směru horizontálním i vertikálním, sezónně i během dne.

Pro posuzování kvality vody není zatím v ČR pro takovéto vodní nádrže vydána žádná norma. Pro určení charakteru nádrže (jezera) je tedy vhodné dělení dle trofie podle Rasta (1989) na jezera:

- **oligotrofní** (obsah celkového fosforu je menší než 0,01 mg/l, chlorofylu méně než 2 g/l, průhlednost vody větší než 4 m)
- **mezitrofní** (celkový fosfor méně než 0,025 mg/l, chlorofyl méně než 7 g/l, průhlednost větší než 2,5 m)
- **eutrofní** (celkový fosfor méně než 0,1 mg/l, chlorofyl méně než 40 g/l, průhlednost větší než 1 m)
- **hypertrofní** (celkový fosfor více než 0,1 mg/l, chlorofyl více než 40 g/l, průhlednost menší než 1 m).

Pro průběh procesů ve vodě nádrži zbytkových jam je důležitá jejich teplotní stratifikace, která ovlivňuje míru promíchávání vody.

Podle promíchávání vody se jezera dělí na:
- **holomiktická** – alespoň jednou ročně dojde k úplnému promícháení vodních mas.
- **meromiktická** – nejhlubší vrstvy vody se nezúčastňují sezónního promíchávání vody. Zejména hluboká jezera (nejméně 70 m).

Obr. č. 16 - Teplotní pásma a proudění v jezeře

(KEMEL, 2000)
V letních měsících dochází k ustálení horní prohládané vrstvy (epilimnion), vrstvy s rychlým poklesem teploty vody (metalimnion) a spodní studené vrstvy (hypolimnion). V epilimnionu probíhá primární produkce. Část vytvořené orgánické hmoty klesá ke dnu a rozkládá se v hypolimnionu za spotřeby kyslíku. Tyto sedimentující částice odnáší z epilimnia fosfor a omezují další primární produkci. V jarních a podzimních měsících dochází k promíchávání celé vrstvy vody, a tím k obohacení hypolimnia kyslíkem a naopak horních vrstev vody fosforem. Mimo období cirkulace vody se kyslík do hypolimnia hlubších nádrží prakticky nedostává. Pokud je zásoba kyslíku v hypolimnionu nedostatečná, dochází trvale k mnírnější inteligenci organických látek působících sem z epilimnia. Fosfor je pevně vázán v sedimentech. Je-li zásoba kyslíku v hypolimnionu dostatečná, dojde během letního období k jeho vyčerpání. Potom se intenzivně ze dna uvolňuje fosfor, který následně podporuje produkci rostlinné biomasy.

Objem hypolimnia ve vztahu k objemu epilimnia je jedním ze zásadních kriterií pro budoucí kvalitu vody v nádrži zbytkové jámy (čím větší je tento poměr, tím přiznivější jsou předpoklady pro optimální kvalitu vody). Proto z hlediska budoucí trofie nádrže je nutno preferovat hlubší nádrže před mělšími.

Pro intenzitu primární produkce je nejčastěji rozhodující přírůstek fosforu (jako limitující živiny). Největší přírůstek je většinou způsoben přítikající povrchovou vodou (přítoky), menší ze srážkové vody a jeho toku ode dna nádrže.

Vývoj kvality vody v nádržích zbytkových jam bude ovlivňováno velkým množstvím povrchových případech velmi rozdílných (jejích závažnost je v jednotlivých případech velmi rozdílná) a bude výsledkem fyzikálních, chemických a biologických procesů, které budou probíhat nejen při napouštění nádrže, ale i po jejím napuštění.

Základní vstupní hodnotou pro hodnocení předpokládaného vývoje kvality vody v nádrži bude kvalita a množství napouštěcí vody.

Požadovaná výsledná kvalita vody v jezerech zbytkových jam bude ohrožována zejména možností její eutrofizace, případně nadváhy znečištění, u některých neprůtočných jezer výjimečnou i možností jejich zasolení.

Eutrofizaci charakterizujeme jako souboj přírodních a uměle vyvolaných procesů vedoucích ke zvyšování obsahu anorganických živin ve stojatých i tekoucích vodách.

Přírůstek anorganických živin vede k intenzivnímu přírůstku primární produkce ve vodě, která má za následek sekundární znečištění vody organickými látkami vznikajícími životní činností rozsijelého planktonu. Tím dochází ke zhoršení senzorických vlastností vody (barva, průhlednost, zákal, pach), k vyšším nárokům vody na kyslík a někdy i k tvorbě toxických látek, které mají vliv na vodní organizmy. Za hlavní limitující živinu pro vznik eutrofizace se považuje...
je fosfor. Sloučeniny dusíku v procesu eutrofizace působí obvykle méně kriticky než fosfor.

Z dosavadních zkušeností vyplývá, že zásadně nelze problematiku související s vývojem kvality vody zcela zevšeobecnit. K řešení výsledné kvality vody v jezerech zbytkových jam je nutno přístupovat (na základě všeobecných znalostí) vždy individuálně.

Těžba uhlí vedla k zásadním změnám v systému povrchových vod. Došlo k výrazným změnám morfologie terénu (propadání, hloubení těžebních jam a budování převýšených výsypk). Dále k rušení starších nádrží, odklonem toků mimo těžební území, budování různých technologických nádrží a k samovolnému vzniku „nových vod“ (v místě terénních propadlin, výronu podzemní vody na povrch).

Pro Severočeskou uhelnou pánev jsou charakteristické zaplavené propadliny po hlubinné těžbě (pinky), přeložky toků, dočasná jezírka a „louže“, odvodňovací příkopy v lomech a na výsypkách, jezírka a mokřady v patě výsypek, umělé nádrže na výsypkách, suché nádrže (poldry), zatopené zbytkové jámy, plaviště popílku a další technologické nádrže.

Propadliny i starší zaplavené zbytkové jámy mívají často překvapivě čistou vodu s nízkou úživností a s pestrým oživením.

5.1.2 Jezera zbytkových jam v severozápadních Čechách

V rekultivačních návrzích v obou podkrušnohorských revírech se předpokládá postupné zatopení všech osmi velkých zbytkových jam po povrchové těžbě hnědého uhlí.

Nádrže zbytkových jam po povrchové těžbě hnědého uhlí je třeba z důvodu charakteristiky nádrží a jezer označovat jako jezera. Zpočátku jsou antropogenní, později přirozené.
Tabulka č. 28 - Základní hydrotechnické parametry zbytkových důlních jezer

<table>
<thead>
<tr>
<th>Název lomu</th>
<th>Varianta</th>
<th>Předpoklad zahájení</th>
<th>Plocha hladiny [ha]</th>
<th>Objem vody [mil.m³]</th>
<th>Hloubka vody [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nazáplvání</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severočeská hnědouhelná pánev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chabařovice</td>
<td>2001</td>
<td>226,0</td>
<td>35,0</td>
<td>15,6</td>
<td>23,3</td>
</tr>
<tr>
<td>Ležáky</td>
<td>2006</td>
<td>322,6</td>
<td>72,4</td>
<td>22,4</td>
<td>59,0</td>
</tr>
<tr>
<td>ČSA</td>
<td>„optimální“</td>
<td>2020</td>
<td>701,0</td>
<td>236,8</td>
<td>33,7</td>
</tr>
<tr>
<td>ČSA</td>
<td>„hluboká“</td>
<td>2020</td>
<td>1 259,0</td>
<td>760,0</td>
<td>60,4</td>
</tr>
<tr>
<td>Vršany (Šverma)</td>
<td>č. 1</td>
<td>2030</td>
<td>342,0</td>
<td>35,6</td>
<td>10,4</td>
</tr>
<tr>
<td>Vršany (Šverma)</td>
<td>č. 2</td>
<td>2050</td>
<td>390,0</td>
<td>73,6</td>
<td>18,8</td>
</tr>
<tr>
<td>Bílina</td>
<td>2037</td>
<td>1 145,0</td>
<td>645,0</td>
<td>56,0</td>
<td>170,0</td>
</tr>
<tr>
<td>Libouš</td>
<td>„generel“</td>
<td>2038</td>
<td>640,0</td>
<td>110,4</td>
<td>17,3</td>
</tr>
<tr>
<td>Libouš</td>
<td>průtočné jezero</td>
<td>2038</td>
<td>1 083,2</td>
<td>248,0</td>
<td>22,9</td>
</tr>
<tr>
<td>Libouš</td>
<td>neprůtočné jezero</td>
<td>2038</td>
<td>511,9</td>
<td>79,4</td>
<td>15,5</td>
</tr>
<tr>
<td>Sokolovská pánev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medard – Libík</td>
<td>2010</td>
<td>501,4</td>
<td>138,0</td>
<td>27,5</td>
<td>51,0</td>
</tr>
<tr>
<td>Jiří - Družba</td>
<td>2038</td>
<td>1 322,3</td>
<td>514,9</td>
<td>40,6</td>
<td>93,0</td>
</tr>
</tbody>
</table>

(Zdroj: Koncepce řešení ekologických škod vzniklých před privatizací hnědouhelných těžebních společností v Ústeckém a Karlovarském kraji, 2003)

5.1.3 Jezero Chabařovice

Jezero Chabařovice je ze všech osmi navrhovaných jezer nejmenší. Oproti ostatním jezerům je také poměrně mělké a tudíž i potenciálně problematické z hlediska kvality vody.

Zbytková jáma hnědouhelného lomu Chabařovice je první, kde se hydrická varianta rekultivace realizuje v praxi (v České republice). Již napuštěná jezera jsou známa z okolních států, zejména z Německa (Saska, Saska-Anhaltska, Braniborska). Jedná se o hnědouhelné revíry v okolí Lipska (firma MBEG Thiesen) a v okolí Cottbusu (Chotěbuzy) spravované firmou LMBV. V Německu je této problematice věnována široká pozornost a v minulých letech zde byly řešeny velké mezinárodní projekty IBA, REKULA, REVITAMIN a READY. Stručný popis těchto projektů s uvedením internetových adres uvádí NERUDA M., VRÁBLÍKOVÁ J. (2007).
Projektované parametry budoucího jezera (PKÚ, 2007):

kóta hladiny: 145,3 m n. m.
plocha hladiny: 225 ha
objem vody: 35 mil. m³
hloubka vody:
maximální: 23,3 m
průměrná: 15,6 m

Řízené zatápění ozdolované a terénně upravené zbytkové jámy Chabařovice bylo zahájeno v červnu 2001.

Po napuštění zbytkové jámy a dokončení rekultivací se předpokládá její sportovně-rekreační využití; kvalita vody proto musí vyhovovat požadavkům příslušných předpisů.

Zbytková jáma je plněna ze tří typů zdrojů:

- řízené (hlavní) přítoky: z VD Kateřina a VD Zalužanská – tyto nádrže jsou eutrofní až hypertrofní rybníčního typu a poskytují bohatý přísun živin a inokula fytoplanktonu do jezera.
- přítoky z vlastního povodí (tání sněhu, letní srážky, drobné, místně i časově proměnlivé). Výrazně se liší složení vody přítoků ze severní a jižní strany: přítoky z jižní strany (z prostoru Lochočické výsypky) se vyznačují podstatně vyšší vodivostí, obsahem síranů, sloučenin dusíku, celkového fosforu, železa a manganu.
- důlní vody (nepravidelně čerpané).

Všechny přítoky a vznikající akumulace jsou od začátku napouštění monitorovány v široké škále ukazatelů. Za celou dobu sledování nebyly ve vodě jezera zjištěny nadlimitní koncentrace těžkých kovů, specifických organických látek a hygienicky významných bakterií. Hlavním rizikem pro kvalitu vody v jezere Chabařovice je vysoký přísun živin z přítoků. Management jezera musí zahrnovat sledování a ovlivňování ichtyologické složky ekosystému.

5.1.4 Vývoj kvality vody v jezere Chabařovice

Přikryl a Faina (2006) považují za vhodnou analogii, pro posuzování vývoje vody u větších zbytkových jam, zatopený lom Barbora u Teplic. Barbora je mladá nádrž jezerního typu ležící nedaleko města Teplice. Vznikla neřízeným nastou-
páním důlních vod po skončení těžby v povrchovém lomu v 70. letech 20. století. Požadují také za velmi potřebný mnohostranný monitoring těchto antropogenních jezer. Po celou dobu sledování nebyly v jezeře zjištěny významné koncentrace těžkých kovů ani organických škodlivin.

Koncentrace celkového fosforu v přítocích do jezera je vysoká (často přesahují hodnoty 0,1 mg/l). Procesy v jezeře jeho koncentraci významně snižují. V jezeře koncentrace celkového fosforu odpovídá poměrům v oblasti eutrofie až hypertrofie.

Graf č. 21 - Celkový fosfor ve sledovaných profilech

![Graf č. 21](zdroj: VLASÁK et al. 2003)

Graf č. 22 - Chlorofyl-a v přítoku do jezera (Kateřina, Zalužanský) 2001-2003

![Graf č. 22](zdroj: VLASÁK et al. 2003)
Pokud by koncentrace fosforu byla jediným mechanismem, který určuje množství fytoplanktonu, pak podle Dillon-Riglerova vztahu by se očekávala průměrná sezónní koncentrace chlorofylu-a pohybovala na úrovni 40–50 µg/l s průhledností pod 1 m. Od začátku napouštění však koncentrace chlorofylu-a v jezeře nepřekračují (s výjimkou jarních měsíců) 5 µg/l (obr. č. 17) a průhlednost je trvale okolo 4 m. Současný stav je důsledkem provázaností různých složek a trofických úrovní ekosystému. Koncentrace chlorofylu-a je řízena především biologickými pochody (množství a složení rybí obsádky a jí ovlivňované množství filtrujícího fytoplanktonu).

Důležitou roli ve vodních ekosystémech hrají vodní makrofyta. Významně se podílí na koloběhu prvků ve vodě. Druhy rostlin s největším zastoupením v nádrži byly stolístek Myriophyllum spicatum, (řidší zárosty vysokých rostlin) a parožnatka Chara hispida (hustá dnová vegetace). Rostliny v nádrži zaujímají 3,4 % objemu vody, tj. ca 429 tis m³. Stolístek tvořil cca 55 % a Chara 45 % podílu rostlin. Celková biomasa rostlin v nádrži byla odhadnuta na 120 tun sušiny. Tato masa obsahovala cca 96 kg fosforu.

Je patrné, že makrofyta hrají významnou roli v koloběhu fosforu v nádrži Chabařovice. Vyvázaním velké části přitěkajícího fosforu pravděpodobně limitují rozvoj jiných organismů (Kalff 2002), především fytoplanktonu, na což poukazovala i vysoká průhlednost vody.

5.1.5 Vývoj rybí obsádky v jezeře Chabařovice

Rybí obsádka nádrže Chabařovice u Ústí nad Labem byla orientačně sledována od roku 2001, jednalo se však zejména o vzorkování litorálních habitátů (LH) jezera plůdkovými zátahovými sítěmi a bentickými tenatními sítěmi. V roce
2005 byl proveden první průzkum nádrže jako celku se všemi bentickými (BH) i pelagickými habitaty (PH), které se zde vyskytují (obr. č. 17).

Obr. č. 17 - Základní rozdělení vodních objemů a habitatů v nádrži Chabařovice v r. 2005

![Diagram showing water volumes and habitats in Chabařovice pond in 2005](image)

(zdroj: KUBEČKA et al. 2006)

V prvním roce napouštění nebyly v jezeře Chabařovice ryby. Jejich pronikání z nádrže Kateřina znemožňovalo technické řešení přítoku.

Biomasa planktonofágních ryb však zatím nedosáhla úrovně, na které je schopna podstatným způsobem ovlivnit druhové složení a velikostní strukturu zooplank-
tonu. Udržení žádoucího stavu bude vyžadovat cílené biomanipulační zásahy. Vliv planktonofágních ryb na jezero se zvyšuje v případě jejich úspěšné reprodukce a také driftem plůdu spolu s napouštěnou vodou.

Jako součást biomanipulačního opatření navrženého v roce 2002 bylo uskutečněno vysazení plůdu dravých ryb. Ve třech termínech byl vysazen rychlený plůdek štíky a bolena a rozkrmený plůdek sumce.

Násady:

9. 5. 2003 Štíka obecná (*Esox lucius*) – 8500 ks 14,45 kg
17. 7. 2003 Bolen dravý (*Aspius aspius*) – 10000 ks 5 kg
2. 9. 2003 Sumec velký (*Silurus glanis*) – 1959 ks 10,97 kg

Obr. č. 18 - Věková a velikostní složení perlín v úlovcích tenat v litorále

(zdroj: KUBEČKA et al. 2006)
Obr. č. 19 - Věkové a velikostní složení okouna v úlovcích tenat v litorále

![Diagram showing age and size composition of tench in the littoral](image)

(zdroj: KUBEČKA et al. 2006)

Obr. č. 20 - Biomasové a početnostní složení celé rybí obsádky a plůdkového společenstva nádrže Chabařovice v roce 2005

![Bar chart showing biomass and frequency composition](image)

(zdroj: KUBEČKA et al. 2006)

Celková hmotnost vysazených dravců za dobu existence jezera je 2,04 kg/ha plochy v roce 2005 (z toho 1,8 kg/ha bylo vysazeno přímo v roce 2005). Dosavadní intenzita vysazování se nevychozí běžné praxi na vodárenských nádržích ČR, kde se v průměru vysazuje 0,4 – 0,5 kg dravců na hektar a rok. Toto malé množství nezaručuje posun biologické rovnováhy ve prospěch filtrujícího planktonu a vysoké průhlednosti vody.

Proto byl navržen jako hlavní ryba pro další vysazování dravců. Žádoucí je vysazovat candáty ve velikostech, které nebudou dostupné předčiněmu tlaku okouňa. Za perspektivní druh se považuje také úhoř říční. Zahraniční zkušenosti prokazují, že větší množství candátů a úhořů spolu může vcelku dobře koexistovat.

Biomanipulační opatření spočívala také v orientačním odlovu perlín a okoun pomocí vězenců pracovníků Palivového kombinátu Ústí, s. p. Odlovy prokázaly, že rybí obsádky v jezeře se začínají pohybovat v žádoucím stavu pod tzv. biomanipulačním prahem.

Jako žádoucí se jeví sledování vlivu cizorodých látek na rybí obsádky. U některých ulovených ryb se vyskytly různé anomálie, které mohou s přítomností cizorodých látek nebo dalšími specifiky souviset. Vyskytují se například jedinci plotice se zmnoženými šupinami nebo modravě zabarvení jedinci štiky.

Vysazování dravců v roce 2005

21. 6. 2005 (Vlasák a kol.)

Bolen 5000 ks, 2,5 kg

21. 10. 2005 (Kubečka a kol.)

Štika 789 ks, 239,28 kg

Candát 194 ks, 42,52 kg

Sumec 4 ks, 30,95 kg

Snížení biomasy rybí obsádky je pro jezero pozitivní jev. Stav množství ryb v jezeře v roce 2006 je necelých 20 kg/ha. Biomanipulační předěl se nachází v oblasti 50–100 kg/ha. Negativní je, že zatím nebyla prokázána úspěšná repro-

Biomanipulace aplikovaná na jezero Chabařovice se snaží navodit stav, kdy budou populace planktonofágních ryb kontrolovány silnými obsádkami dravých ryb. To by mělo umožnit dostatečný rozvoj filtrujícího zooplanktonu s pozitivním vlivem na kvalitu vody.

Předpokládá se, že velkou roli v podpoře této snahy sehrály početné ročníky okouna, který je po celou dobu vývoje rybí obsádky dominantním dravcem. Samovolný vývoj rybí obsádky od dominanci okouna k dominanci kaprovitých ryb, jak je běžný z řady jiných nádrží, není zde žádoucí. Mělo by to negativní vliv mj. na kvalitu vody v jezeře.

V případě jezera Chabařovice, jako možnost zabránění rozvoje kaprovitých ryb, připadá v úvahu především ochrana a podpora dravých ryb, případně cílené odlovky kaprovitých ryb.

Podpora dravých ryb v jezeře Chabařovice se zaměřila na čtyři druhy – bolen dravý, štika obecná, sumec velký a candát obecný. Z počátku se kladl důraz na vysazování bolena. Problemem se ukázalo, že reofílní (proudomilný) bolen těžko vytvoří v jezeře autoreprodukční populaci. Proto se v dalších letech od vysazování bolena upustilo a nedoporučuje se ani do budoucna.

ticky nelze vyloučit zvýšenou úmrtnost vysazených štíků, i když mrtvé značené štíky nebyly po vysazení nacházeny. Dalšími možnostmi je vliv rybožravých ptáků a pytláků na vysazené ryby. Další možností je, že vysazené štíky unikly pozornosti. Vzhledem k možnosti podhodnocení štík pasivními lovnými pro-středky je možné, že celkový počet ulovených a nalezených štík v roce 2006 (17 ks) nebyl dostatečně reprezentativní. Pro zjištění skutečného stavu populace štíků v jezeře byla v roce 2007 použita elektrolovná omražovací loď a byl rozšířen počet vězenců.

Přestože v jezeře je nadbytek rostlinstva v příbřežní zóně a určitý počet štíků se zde vyskytuje, očekávaný rozvoj tohoto druhu zatím nenastal. V průzkumných odlovech se tohoročně štíky vyskytovaly pouze ojediněle. Nástupu štíkové fáze v jezeře tak pravděpodobně něco brání. Problémy mohou být s reprodukcí štíků, inkubací jíker nebo s dalším pěšetím např. vlivem predace.

Regulační odlovy nežádoucích druhů ryb byly prozatím prováděny pouze omezeně při komplexních odhadech a odlovech vězenců. Vzhledem k přechodnému poklesu zejména biomasy plevelných ryb, není nezbytné regulační odlovy stupňovat.

5.1.6 Cizorodé látky

V roce 2006 bylo předáno Laboratořím Povodí Labe 6 kusů ryb (3 perlíni, 1 okoun, 1 štika, 1 bolen). Obsahy cizorodých látek prokázaly překročení přípustného množství podle vyhlášky Min. zdravotnictví 53/2002 Sb. zejména v případě rtutí. Přípustné množství pro nedravé ryby (0,1 mg/kg živé váhy) překročily pro ruť všechny vzorky (perlíni 0,19 – 0,22 mg/kg, okoun 0,21 mg/kg, bolen 0,39 mg/kg a štika 0,52 mg/kg). Přípustné množství pro dravé ryby (0,5 mg/kg) bylo překročeno v případě štíky. Výsledky ukazují, že v nádrži Chaba-
řovice byl shledán zvýšený výskyt rtuti. Je vhodné tuto problematiku i nadále sledovat.

Při odlovcích v letech 2005 a 2006 byly uloveny plotice a perlíni se zmnoženým šupinným pokryvem. Tyto neobvyklé úlovy byly předány k dalším analýzám pracovníkům Ústavu živočišné fyziologie a genetiky.

Pro další sledování cyanózního zbarvení štiku je třeba zvýšit počet pozorovaných štik.

V jezeře Chabařovice byla zjištěna pravidelná reprodukce pouze čtyř druhů ryb (plotice, perlína, okouna a ježdík). Zvláštní je absence reprodukce druhů, které zde mají pro reprodukci ideální podmínky (štíka, candát, cejn). Pro vysvětlení této problematiky bude v následujícím roce provedeno sledování plůdkového společenstva.

Pro rok 2007 bylo doporučeno vysadit plůdek candáta a sumce ve velikosti 1+ (po 3000 ks od obou druhů). Dále bylo doporučeno zopakovat vysazení 100 kg dvou až čtyřletých candátů, aby v nádrži byly přítomné dravé ryby namísto rychle ubývajících dominantních ročníků okouna. Dále se doporučuje vypustit do nádrže násadu candáta, která byla ponechána na přezimování v nádrži Roudníky.

Zavedení dvou způsobů regulačních odlovů:

1) Provozovat větší počet vězenců (10-15 ks) v jarním a letním období a v případě ulovení většího počtu kaprovitých ryb, tyto odstraňovat z nádrže.

2) Využít úlovků z komplexního průzkumu rybí obsádky jako regulačních odlovů.

5.2 Shrnutí

Rybí obsádka nádrže Chabařovice se nachází v dobrém stavu, charakterizovaném nízkou biomasou plevelných ryb (pod 20 kg/ha) a dominancí perlína a okouna. Velmi pozitivní je absence cejna velkého a oukleje obecné a skutečnost, že zřejmě skončilo vnikání plevelných ryb ze zdrojů v povodí jezera. Pro další vývoj bude zásadní průběh střídání dominantních ročníků okouna, ke kterému dojde v blízké budoucnosti. Největší hrozbu při střídání ročníků okouna představuje možný nárůst početnosti kaprovitých ryb, které mohou zvrátit poměry ve společenstvu volné vody směrem k vyšší primární produkci řas. V souvislosti s tímto nebezpečím je velmi žádoucí věnovat zvýšenou pozornost populacím dravých ryb a provádět udržovací podporu candáta a sumce, kteří se jeví jako nejperspektivnější pro regulaci rybí obsádky.
Vysazování dravců v roce 2006:

18. 10. 2006 (Říha a kol.)
Candát 2558 ks, 147,4 kg

Satelitní nádrže jezera Chabařovice
Nádrže v povodí jezera jsou nejen zdrojem vody pro zatápění, ale také zdrojem inokula nežádoucích ryb.

Sedimentační nádrž (na vodoteči P8, západní svah zbytkové jámy)
V roce 2003 zde byl zjištěn početný výskyt perlína. Do jezera migrují nežádoucí planktonofágní ryby a planktonní řasy.

Vodní nádrž (VD) Kateřina
V jezere Chabařovice byl prokázán výskyt ježdíka, který se v okolí jezera vyškytuje pouze ve VD Kateřina. Ta je zdrojem řízeného zatápění jezera. Potrubí v Kateřině není opatřeno zábranou pro ryby.

VD Zalužanská

VD Rabenov
Je jediným možným zdrojem kontaminace jezera slunkou obecnou. V roce 2002 bylo opakovaně pozorováno vyplavování tohoto druhu do kanálu pod výpustí této nádrže. VD Rabenov není opatřena zábranami proti migraci ryb.
Obr. č. 21 - Mapa revitalizací v okolí jezera Chabařovice (zdroj: Koncepce řešení ekologických škod 2003)
Jezero Chabařovice (viz obr. č. 21)

Parametry jezera Chabařovice
Cílová kóta hladiny: 145,3 m. n. m.
Plocha: 248 ha
Objem vody: 35 mil. m3
Průměrná hloubka: 15 m
Maximální hloubka: 23 m
Předpokládaný termín ukončení prací: rok 2015
Předpokládané náklady na revitalizaci: 4,5 mld. Kč (odhad při zahájení útlumu v roce 1994)

Charakteristika jezera Chabařovice podle Ministerstva zemědělství ČR - Seznam významných vodních děl IV kategorie (Ministerstvo zemědělství, 2006):
Název vodního díla: Jezero Chabařovice
Tok: Zalužanský potok
Číslo vodohospodářské mapy: 02-32
Číslo hydrologického pořadí povodí: 1-14-01-089
Plocha: 247,6 ha
Vlastník: Palivový kombinát Ústí s. p.
Provozovatel: Palivový kombinát Ústí s. p.
Poznámka: Modlanský potok, 1-14-01-089 až 091

5.3 Disparity vodního režimu severních Čech - identifikace klíčových faktorů a jejich analýza

Disparity vodního režimu nejenom severních Čech se projevují v nevyhovujícím stavu vodotečí. Ten byl zapříčiněn zejména nevhodnými technickými úpravami v minulosti, tj. napřímením, opevněním koryt. Dále jejich nadměrným zahloubením, často spojeným s vykácením břehového porostu. Negativní důsledky tohoto stavu pozorujeme v urychleném odtoku vody z krajiny a v nedostatečné retenci vody.
Řešení tohoto problému spočívá v revitalizacích vodotečí a napojení tohoto procesu na komplexní protipovodňovou ochranou území celého povodí (podobně jako v Německu (Bavorsku) a dalších evropských státech). Filozofie těchto snah zahrnuje vytvoření rozlivných ploch v horních a dolních částech povodí. To souvisí s výstavbou suchých nádrží (poldrů). Vynikajícími rozlivnými plochami mohou být revitalizované části vodních toků. V intravilánech řešíme poněkud odlišnou revitalizační úlohu, ale podle zkušenosti od kolegů z Německa, je možné i tato koryta ekologicky lépe začlenit do krajiny.

Disparity vodního režimu krajiny je možné uvést také v bodech:

- Napřímené vodní toky
- Zrychlený odtok vody z krajiny
- Zamezení vsakování vody korytem toku
- Snížení zásoby podzemní vody
- Nedostatečný břehový porost u vodotečí
- Nadměrně zahloubená koryta
- Změna trasy vodních toků v Podkrušnohoří v souvislosti s těžbou uhlí (např. Podkrušnohorský případě)
- Zánik některých jezer a vodních ploch z důvodu těžby.

Náprava:

- Zapojení revitalizací potoků do rekultivačních plánů těžebních podniků
- Revitalizace Podkrušnohorského případě a dalších umělých kanálů
- Budování rybích přechodů, odstraňování migračních bariér
- Hydrická varianta rekultivací, zatápění dolů (jezero Chabařovice, jezero Ležáky-Most atd.)
- Biomanipulační opatření na nově napouštěných jezerech s cílem vhodného vývoje rybí obsádky a zajištění dobré kvality vody v jezeře.

Velikost a rozměry revitalizovaného koryta vodotečí by měly odpovídat vodnosti a lokalitě. Koryta, která byla dříve upravena, jsou většinou výrazně zahloubená z důvodu kapacity, ale mnohem častěji se koryta zahlubovala z důvodů možnosti gravitačního zaústění odvodnění lokality. V současné době se již takovéto

Menší a užší koryto je vhodnější i z hlediska jeho stability. Při povodňových průtocích dochází brzy k vybřežení a vlastní koryto pak není ničeno, jelikož není dosaženo extrémních hloubek a rychlostí. Voda, která protéká inundací většinou nezpůsobuje na korytě vážnější škody.

Na revitalizaci je také velice důležité, aby mělo koryto volnost k vlastnímu vývoji a dotváření. Dále je žádoucí, aby břehy neměly konstantní sklon, ale střídaly se úseky pozvolnější a strmější. Ani v případě lokálních nátrží se nemusí jednat o závadu, pokud nedochází k devastaci koryta. V mnohých případech se osvědčilo místní stržení břehové hrany a snížení sklonu břehu nad hladinou minimálních průtoku. Tento zákon musí být zakončen urovnáním a osetíím ploch vhodnou travní směsí.

Koryto je nutné při revitalizačním zásahu dimenzovat také na průtoky minimální, to znamená pří rostých by měla být úprava stále ještě funkční. JUST (2005) doporučuje koryto navrhnout na velikost třicetidenního průtoku Q_{30d}, maximálně u pahorkatin na průtok jednoletý Q_{1}. Jako součást koryta by měly být i tůně pro přežití organismů v sušších obdobích. Neměly by to však být těžce opevněné objekty, ale postačí rozšíření a zahloubení koryta. Dochází tak k přirozenému zklidnění původních proudění.

Koryta se při revitalizačích stabilizují minimálně, úměrně významu a využití toku a okolí. Časový vývoj koryta je přirozený a není nutné ani žádoucí ho brzdit. Opevnění by mělo být co nejpružnější, což splňují například kamenné pohozy. Je nutné volit přiměřenou velikost kamenů. V případě příliš stejnorodého a těžkého materiálu se voda může při běžných průtocích ztrácet pod vrstvou kamenů. Revitalizované koryto musí být průchodné pro vodní organismy, které se v dané lokalitě nacházejí. Migrace je nejdůležitější pro takové druhy, které tento pohyb potřebují pro životní cyklus, proto je nutné při revitalizačních úpravách využívat migračně propustné spádové objekty.

Seznam zkratek:

- 0+ ryby: ryby vysazené v letošním roce
- 1+ ryby: ryby vysazené v loňském roce
6 Analýza dlouhodobých antropogenních vlivů na ekosystémy modelových pánevních okresů

6.1 Popis modelového území

Jedním z prvních cílů nově zahájeného výzkumného projektu VaV MMR WD 44-07-1 zaměřeného k řešení disparit podkrušnohorských okresů je identifikovat a adekvátně vymezit charakteristiky tohoto modelového území. Velmi významným nástrojem k takové multidisciplinárně analýze je využití vědeckých map potenciální přirozené vegetace tohoto modelového území, dále pak využití existujících historických map a zejména pak výsledků celoevropského satelitního mapování provedeného v rámci projektu CORINE LAND-COVER (CLC 2000), zaměřeného na zjištění vývoje aktuálního pokrývu území evropských zemí.

Pro účely správného zaměření tohoto nového víceletého výzkumného projektu, zacíleného na identifikaci a návrhy řešení disparit regionu podkrušnohorských pánevních okresů, bude proto žádoucí provést komparativní analýzy základní územní struktury tohoto modelového území.

Prvním analytickým pohledem je porovnání z hlediska situace jak by asi vypadalo modelové území bez dlouhodobých vlivů lidí (srovnání s mapou potenciální přirozené vegetace ČR).

Druhým komparativní analytickým pohledem je posouzení, jak skutečně vypadalo modelové území v první polovině 19. století před započetím velkých plošných těžebně industriálních zásahů do tohoto území (srovnání s druhým vojenským mapováním modelového území: bude řešeno v r. 2008).

Třetím analytickým pohledem je, jak vypadalo modelové území na počátku 90. let, tj. na počátku přechodu k tržnímu ekonomickému systému v porovnání se situací o deset let později a rovněž je pro účely zjištění územních disparit vhodné porovnat situaci tohoto modelového území se strukturálními údaji za celou Českou republiku.

Již zde v úvodu je třeba upozornit, že výsledky celoevropského satelitního snímkování jsou velmi vhodně využitelné právě pro porovnávání národních a regionálních rozdílů a disparit. Na druhé straně by bylo nesprávné očekávat od metodiky CLC více než může poskytnout. Protože snímkování probíhalo ve čtvercích 500x500 m, zachycují snímky 1990 a 2000 především změny, které přesáhly vymezené čtverce. Přesto z již uskutečněných praktických aplikací výsledků CLC 2000 vyplýnulo, že získané informace mají poměrně solidní vypovídací schopnost a následné výsledky detailnějších analýz neukázaly podstatnější odchylky od prvotních relací.
6.2 Přírodní potenciál hodnoty ekosystémů modelového území

Vlastní analýzu příčin regionálních disparit uvedených čtyř pánevních okresů je vhodné začít porovnáním potenciálních přírodních podmínek tohoto území, tak jak by existovalo s vegetací vzniklou přirozeným sukcesním vývojem bez pokračujících větších zásahů člověka, se současnou podobou tohoto modelového území. Porovnáním potenciální přírodní podoby modelového území se současnou situací lze odvodit celkovou ekologickou újmu, která vznikala dlouhodobě na funkcích a službách ekosystémů, tak jak se utvářely v období posledního interglaciálu (za období posledních cca 12-13 tisíc let).

Porovnání potenciální přirozené podoby modelového území s jeho současným stavem nám ukáže celkovou dlouhodobou kumulativní antropogenní změnu, tj. celkovou výslednou míru dlouhodobé antropogenizace tohoto území. Za tímto účelem uvádíme nejdříve celkovou mapu přirozené vegetace modelového území (kopie tiskové mapy) a následně pro větší názornost výřezy z digitalizované mapy potenciální přirozené vegetace území ČR (obr. č. 22 a obr. č. 23).

Obr. č. 22 -

Pramen: Neuhäuslová, Moravec Mapa potenciální přirozené vegetace ČR
Obr. č. 23 -

Pramen: Neuhäuslová, Moravec Mapa potenciální přirozené vegetace ČR

Obr. č. 24 -

Pramen: Neuhäuslová, Moravec Mapa potenciální přirozené vegetace ČR

Published by CENIA (C) ARCDATA, BÚ AV ČR

Potenciální přirozená vegetace

1 - Širokolistá jasanina
2 - Corrykovec dříplekabíra
3 - Lesní třešeň a lípa velkokvětá
4 - Bučina a týřův podrost
5 - Vlašská bučina
6 - Bílá bučina
20 - Borovice lesní
25 - Horyšovské stromové horněkmenové dvojrody
33 - Oslicovice olesní
36 - Bíloplodové olesnictví
38 - Bíloplodové olesnictví
44 - Podrost smrkového porostu
51 - Komplex horských vrchovin
54 - Komplex horských vrchovin

50 - Komplex horských vrchovin
52 - Komplex horských vrchovin
55 - Komplex horských vrchovin
56 - Komplex horských vrchovin
58 - Komplex horských vrchovin
60 - Komplex horských vrchovin
62 - Komplex horských vrchovin
64 - Komplex horských vrchovin
66 - Komplex horských vrchovin
68 - Komplex horských vrchovin
70 - Komplex horských vrchovin
72 - Komplex horských vrchovin
74 - Komplex horských vrchovin
76 - Komplex horských vrchovin
78 - Komplex horských vrchovin
80 - Komplex horských vrchovin
82 - Komplex horských vrchovin
84 - Komplex horských vrchovin
86 - Komplex horských vrchovin
88 - Komplex horských vrchovin
90 - Komplex horských vrchovin
92 - Komplex horských vrchovin
94 - Komplex horských vrchovin
96 - Komplex horských vrchovin
98 - Komplex horských vrchovin
100 - Komplex horských vrchovin
102 - Komplex horských vrchovin
104 - Komplex horských vrchovin
106 - Komplex horských vrchovin
108 - Komplex horských vrchovin
110 - Komplex horských vrchovin
112 - Komplex horských vrchovin
114 - Komplex horských vrchovin
116 - Komplex horských vrchovin
118 - Komplex horských vrchovin
120 - Komplex horských vrchovin
122 - Komplex horských vrchovin
124 - Komplex horských vrchovin
126 - Komplex horských vrchovin
128 - Komplex horských vrchovin
130 - Komplex horských vrchovin
132 - Komplex horských vrchovin
134 - Komplex horských vrchovin
136 - Komplex horských vrchovin
138 - Komplex horských vrchovin
140 - Komplex horských vrchovin
142 - Komplex horských vrchovin
144 - Komplex horských vrchovin
146 - Komplex horských vrchovin
148 - Komplex horských vrchovin
150 - Komplex horských vrchovin
152 - Komplex horských vrchovin
154 - Komplex horských vrchovin
156 - Komplex horských vrchovin
158 - Komplex horských vrchovin
Vidíme, že na svazích Krušných hor by se přirozeně vyskytovaly (a zčásti vyskytují) vegetační pásma horských květnatých a acidofilních bučin č. 21, 24, 25 a ve vrcholových částech pak i rašelinné smrčiny č. 44. Tyto vegetační pokryvy plní významné ekologické funkce a jejich bodové ohodnocení (metodou hodnocení biotopů ČR; viz Seják, Dejm a kol., 2003) se pohybuje v rozmezí cca od 36 do 66 bodů za metr čtvereční, neboli v rozmezí cca 440-800 Kč ekologické hodnoty na jeden čtvereční metr.

Dalším zpracováním digitalizované mapy potenciální přirozené vegetace pro modelové území byly získány přibližné následující výměry přirozených biotopů (tab. č. 29).

Tabulka č. 29 - Potenciální přírodní vegetace území podkrušnohorských okresů

<table>
<thead>
<tr>
<th>Potenciální přírodní vegetace</th>
<th>km²</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Střemchová jasenina</td>
<td>18,47</td>
<td>0,82</td>
</tr>
<tr>
<td>7 Černýšová dubohabřina</td>
<td>939,46</td>
<td>41,89</td>
</tr>
<tr>
<td>14 Lipová bučina</td>
<td>24,62</td>
<td>1,10</td>
</tr>
<tr>
<td>18 Bučina s kyčelnicí devítiletou</td>
<td>101,16</td>
<td>4,51</td>
</tr>
<tr>
<td>21 Violková bučina</td>
<td>223,87</td>
<td>9,98</td>
</tr>
<tr>
<td>24 Biková bučina</td>
<td>445,76</td>
<td>19,88</td>
</tr>
<tr>
<td>25 Smrková bučina</td>
<td>86,25</td>
<td>3,85</td>
</tr>
<tr>
<td>30 Nerozliší, bazifilní teplomilné doubravy</td>
<td>5,18</td>
<td>0,23</td>
</tr>
<tr>
<td>33 Mochnová doubrava</td>
<td>136,77</td>
<td>6,10</td>
</tr>
<tr>
<td>34 Breková doubrava</td>
<td>5,11</td>
<td>0,23</td>
</tr>
<tr>
<td>36 Biková/jedlová doubrava</td>
<td>20,87</td>
<td>0,93</td>
</tr>
<tr>
<td>43 Třtinová smrčina</td>
<td>5,23</td>
<td>0,23</td>
</tr>
<tr>
<td>44 Podmáčkovicová smrčina</td>
<td>39,88</td>
<td>1,78</td>
</tr>
<tr>
<td>50 Komplex horských vrchovišť</td>
<td>1,7</td>
<td>0,08</td>
</tr>
<tr>
<td>51 Pův. rašeliny</td>
<td>188,36</td>
<td>8,40</td>
</tr>
<tr>
<td>Celkem</td>
<td>2243</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Pramen: Vlastní propočty z digitalizované mapy přirozené vegetace

V položkách CORINE Land Cover lze zjednodušeně vyjádřit podobu modelového území způsobem, který ukazuje následující obrázek č. 25. Z něj vyplývá, že prakticky celé modelové území čtyř okresů by při přírodním, sukcesním vývoji bylo kryto lesními porosty, zčásti kombinovanými s původními rašeliništi (tato území těžeb uhlí mají být hydrickými rekultivacemi změněna převážně na vodní plochy).
Obr. č. 25 - Potenciální přirozená vegetace modelového území v položkách CLC

Pramen: Vlastní propočty na základě CLC2000

Zůstaneme-li u původních, podrobněji členěných položek mapy přirozené vegetace (viz obr. č. 26), můžeme poměrně zřetelně odlišit území jižních svahů Krušných hor, kde by se přirozeně nacházely zejména bučiny (a také se zde v určitých částech nadále vyskytují), od pánevích území s porosty doubrav a dubohabřin.

Ostré rozlišení svahových a pánevých typů lesních porostů je velmi názorně vyjádřeno právě na následující zdigitalizované mapě přirozené vegetace (viz obr. č. 27), připravené v rámci úvodní etapy řešení tohoto projektu pro modelové území čtyř podkrušnohorských okresů.

Vidíme, že jižní svahy Krušných hor by přirobně tvořily bučiny (biková bučina: hrášková zeleň a violková bučina: fialová), v horních partiích Krušných hor by to byly smrkové bučiny (šedomodrá) a podmáčené rohozcové smrčiny (světle modrá) a západní části menší plochy třtinové smrčiny světle růžová).
Obr. č. 26 - Potenciální přirozená vegetace modelového území

Pramen: Vlastní digitalizace na základě mapy potenciální přirozené vegetace

Z digitalizované mapy byly pomocí nástrojů geografických informačních systémů odhadnuty plochy jednotlivých přirozených biotopů vrchů a jižních svahů Krušných hor (viz tab. č. 30)
Tabulka č. 30 - Výměry, bodové a peněžní hodnoty biotopů Krušných hor

<table>
<thead>
<tr>
<th>Přirozené biotopy vrchů a jižních svahů Krušných hor</th>
<th>Výměra v km²</th>
<th>Body/m²</th>
<th>Přír. kapitál v Kč (bod=12,36 Kč)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Violková bučina (Violo reichenbachianae-Fagetum) - Beech woodland with Viola reichenbachiana</td>
<td>223,87</td>
<td>45</td>
<td>124 516 494 000</td>
</tr>
<tr>
<td>24 Bíková bučina (Luzulo-Fagetum) - Woodrush-beech woodland</td>
<td>445,76</td>
<td>52</td>
<td>286 498 867 200</td>
</tr>
<tr>
<td>25 Smrková bučina (Calamagrostio villosae-Fagetum) - Spruce-beech woodland</td>
<td>86,25</td>
<td>43</td>
<td>45 840 150 000</td>
</tr>
<tr>
<td>44 Podmáčená rohozcová smrčina, místy v komplexu s rašelinnou smrčinou (Mastigobryo-Piceetum, SphagnoPiceetum) - Waterlogged spruce woodland with Bazzania trilobata, partly in complex with Sphagnum-rich spruce woodland</td>
<td>39,88</td>
<td>43</td>
<td>21 195 422 400</td>
</tr>
<tr>
<td>43 Třtinová smrčina</td>
<td>5,23</td>
<td>36</td>
<td>2 327 140 800</td>
</tr>
<tr>
<td>50 Komplex horských vrchovišť</td>
<td>1,7</td>
<td>66</td>
<td>1 386 792 000</td>
</tr>
<tr>
<td>Vrchy a jižní svahy Krušných hor celkem</td>
<td>802,69</td>
<td></td>
<td>481 764 866 400</td>
</tr>
</tbody>
</table>

Pramen: Vlastní propočty

V pánevních (jižních) částech modelového území se pak přirozeně sukcesním procesem v postglaciálním období utvořily a vyskytovaly biotopy (případně určité zbytky se mohou v některých částech vyskytovat i v současnosti) obecně zařazené pod dubohabřiny (č. 7) a doubravy (33, 36) a zejména pak mokřadní biotopy, močály, mokrady, resp. rašeliniště (51), která tvoří v současnosti území povrchových těžeb uhlí.

Digitalizací mapy potenciální přirozené vegetace pro modelové pánevní území byly získány přibližně následující výměry přirozených biotopů:
Tabulka č. 31 - Výměry, bodové a peněžní hodnoty biotopů pánevních oblastí Podkrušnohoří

<table>
<thead>
<tr>
<th>Přirozené biotopy pánevních částí modelového území</th>
<th>Výměra</th>
<th>body/m²</th>
<th>Přír. kapitál v Kč</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Střemchová jasenina</td>
<td>18,47</td>
<td>42</td>
<td>9588146400</td>
</tr>
<tr>
<td>7 Černýšová dubohabřina (Melampyro nemorosi-Carpinetum) - Oak-hornbeam woodland with Melampyrum nemorum</td>
<td>939,46</td>
<td>47</td>
<td>545751103200</td>
</tr>
<tr>
<td>14 Lipová bučina</td>
<td>24,62</td>
<td>45</td>
<td>13693644000</td>
</tr>
<tr>
<td>18 Bučina s kyčelnicí davčilistou</td>
<td>101,16</td>
<td>45</td>
<td>56265192000</td>
</tr>
<tr>
<td>30 Nerozliš. bazifilní teplomilné doubry</td>
<td>5,18</td>
<td>60</td>
<td>3841488000</td>
</tr>
<tr>
<td>33 Mochnová doubra (Potentillo albae-Quercetum) - Oak woodland with Potentilla alba</td>
<td>136,77</td>
<td>60</td>
<td>101428632000</td>
</tr>
<tr>
<td>34 Břeková doubra</td>
<td>5,11</td>
<td>51</td>
<td>3221139600</td>
</tr>
<tr>
<td>36 Břeková a/nebo jedlová doubra (Luzulo albidae-Quercetum petraeae, Abieti-Quercetum) - Woodrush-oak and/or silver fir-oak woodland</td>
<td>20,87</td>
<td>51</td>
<td>131556132000</td>
</tr>
<tr>
<td>50 Rašeliniště (Scheuchzerio-Caricetea fuscae, Oxy-cocco-Sphagnetea) - Mires Komplex sukcesních stádií na antropogenních stanovištích (oblasti povrchové těžby aj.) - Complex of successional stages on anthropogenic sites (open-cast coal mines etc.)</td>
<td>188,36</td>
<td>53</td>
<td>123390868800</td>
</tr>
</tbody>
</table>

Pánevní části Pokrušnohoří celkem

<table>
<thead>
<tr>
<th>Výměra km²</th>
<th>Přír. kapitál v Kč</th>
</tr>
</thead>
<tbody>
<tr>
<td>1440</td>
<td>870335827200</td>
</tr>
</tbody>
</table>

Pramen: Vlastní propočty

Tabulka č. 32 - Souhrnná hodnota přírodního kapitálu potenciální vegetace Podkrušnohoří

<table>
<thead>
<tr>
<th></th>
<th>Výměra km²</th>
<th>Přír. kapitál v Kč</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vrchy a jižní svahy Krušných hor celkem</td>
<td>802,69</td>
<td>481 764 866 400</td>
</tr>
<tr>
<td>Pánevní části Pokrušnohoří celkem</td>
<td>1440,00</td>
<td>870 335 827 200</td>
</tr>
<tr>
<td>Podkrušnohoří celkem</td>
<td>2242,69</td>
<td>1 352 100 693 600</td>
</tr>
</tbody>
</table>

Pramen: Vlastní propočty

Z naší hodnotové analýzy vyplývá, že maximální přírodní potenciál fungování ekosystémů propočtený na základě potenciální vegetace modelového území dosahuje při ohodnocení metodou hodnocení biotopů ČR (Seják, Dejmal a kol., 2003) celkové výše cca 1 352 mld. Kč.

Vyhodnocení vývoje ekologické hodnoty území bylo provedeno na základě spojení metody hodnocení biotopů - BVM (Seják, Dejmal a kol., 2003) a výsledků satelitního snímkování v rámci projektu CLC 2000.

Obr. č. 27 - Kladné (zelené) a záporné (žluté a červené) změny v ekologické hodnotě území podkrušnohorských pánevích okresů v období 1990 až 2000

Pramen: Vlastní práce

V konkrétních číselných údajích si můžeme představit vývoj jednotlivých položek pokryvu modelového území v období mezi 1990 a 2000 v následující tabulce.
Tabulka č. 33 - Vývoj pokryvu modelového území v období 1990 až 2000

<table>
<thead>
<tr>
<th>Součet a území</th>
<th>Číslo</th>
<th>Areály střední</th>
<th>Areály lžů rybních soustav</th>
<th>Areály lžů rybích soustav</th>
<th>Areály lžů rybních soustav</th>
<th>Areály lžů rybních soustav</th>
<th>Areály lžů rybních soustav</th>
<th>Areály lžů rybních soustav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areály skálek</td>
<td>3604315</td>
<td>-7753900</td>
<td>9147792</td>
<td>278527</td>
<td>0026967</td>
<td>-571705</td>
<td>420322727</td>
<td>40605230</td>
</tr>
<tr>
<td>Areály lžů rybních soustav</td>
<td>20712300</td>
<td>8500230</td>
<td>42578986</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areály rýb</td>
<td>854098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jelentévy lezy</td>
<td></td>
<td>985027</td>
<td>5054257</td>
<td>5054257</td>
<td>5054257</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listné lezy</td>
<td>-1026305</td>
<td>-1026305</td>
<td>1234567</td>
<td>1234567</td>
<td>1234567</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louky a pastviny</td>
<td>+1014795</td>
<td>-2250503</td>
<td>-2250503</td>
<td>-2250503</td>
<td>-2250503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neznačené území</td>
<td>-8250322</td>
<td>2345678</td>
<td>-8250322</td>
<td>2345678</td>
<td>-8250322</td>
<td>2345678</td>
<td>-8250322</td>
<td>2345678</td>
</tr>
<tr>
<td>Oceánické řady a procenta</td>
<td>-1086735</td>
<td>9856822</td>
<td>1234567</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Přímý vliv a dobrovolné okázání</td>
<td>516804</td>
<td>2684891</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Přechodové léčky</td>
<td>-903303915</td>
<td>-903303915</td>
<td>-903303915</td>
<td>-903303915</td>
<td>-903303915</td>
<td>-903303915</td>
<td>-903303915</td>
<td>-903303915</td>
</tr>
<tr>
<td>Přehledné zemědělské plochy</td>
<td>-15649000</td>
<td>-15649000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Přímoté léčky</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vodní plochy</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celkový součet</td>
<td>-8192894</td>
<td>9149387</td>
<td>-8192894</td>
<td>9149387</td>
<td>-8192894</td>
<td>9149387</td>
<td>-8192894</td>
<td>9149387</td>
</tr>
</tbody>
</table>

Pramen: Vlastní propočty

Tabulka č. 33 ukazuje jak vývoj struktury modelového území podkrušnohorských okresu v položkách Land-cover v období 1990-2000, tak i vývoj jeho bodové ekologické hodnoty. Přírůstek 4 585 milionů bodů představuje v přepočtu na peníze (bod=12,36 Kč) částku cca 57 miliard Kč. O tuto hodnotu se v průběhu 90. let zvýšila ekologická hodnota modelového území.

Slibné nicméně je, že posledních deset let se vlivem hospodářské reformy a vlivem politiky životního prostředí hodnota modelového území zvedla o cca 57 mld. Kč.
Tabulka č. 34 - Struktura přírodního kapitálu modelového území podkrušnohorských okresů (CLC 2000)

<table>
<thead>
<tr>
<th>TAG</th>
<th>popis</th>
<th>body/ m²</th>
<th>plocha</th>
<th>%</th>
<th>Pr. kap. v mil. Kč</th>
<th>plocha</th>
<th>%</th>
<th>Pr. kap. v mil. Kč</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>Nesouvislá městská zástavba</td>
<td>6,84</td>
<td>101277396</td>
<td>4,45 %</td>
<td>8562</td>
<td>102656490</td>
<td>4,52 %</td>
<td>8679</td>
</tr>
<tr>
<td>121</td>
<td>Průmyslové a obchodní areály</td>
<td>1,2</td>
<td>37575011</td>
<td>1,65 %</td>
<td>557</td>
<td>38103583</td>
<td>1,68 %</td>
<td>565</td>
</tr>
<tr>
<td>122</td>
<td>Silniční a železniční síť s okolím</td>
<td>3,2</td>
<td>9582750</td>
<td>0,42 %</td>
<td>379</td>
<td>9880130</td>
<td>0,43 %</td>
<td>391</td>
</tr>
<tr>
<td>123</td>
<td>Přístavy</td>
<td>1,8</td>
<td>714705</td>
<td>0,03 %</td>
<td>16</td>
<td>714705</td>
<td>0,03 %</td>
<td>16</td>
</tr>
<tr>
<td>131</td>
<td>Areály těžby nerostných surovin</td>
<td>3,25</td>
<td>71334298</td>
<td>3,14 %</td>
<td>2865</td>
<td>63535107</td>
<td>2,79 %</td>
<td>2552</td>
</tr>
<tr>
<td>132</td>
<td>Areály skládek</td>
<td>4,75</td>
<td>81052850</td>
<td>3,57 %</td>
<td>4759</td>
<td>7080057</td>
<td>3,11 %</td>
<td>4157</td>
</tr>
<tr>
<td>133</td>
<td>Areály výstavby</td>
<td>0,6</td>
<td>1049054</td>
<td>0,05 %</td>
<td>8</td>
<td>0</td>
<td>0,00 %</td>
<td>0</td>
</tr>
<tr>
<td>141</td>
<td>Areály městské zeleně</td>
<td>17,1</td>
<td>5245308</td>
<td>0,23 %</td>
<td>1109</td>
<td>5245308</td>
<td>0,23 %</td>
<td>1109</td>
</tr>
<tr>
<td>142</td>
<td>Areály sportu a zařízení pro volný čas</td>
<td>16,8</td>
<td>4438315</td>
<td>0,20 %</td>
<td>922</td>
<td>8247491</td>
<td>0,36 %</td>
<td>1713</td>
</tr>
<tr>
<td>211</td>
<td>Nezavlažovaná orná půda</td>
<td>10,35</td>
<td>602435678</td>
<td>26,50 %</td>
<td>77067</td>
<td>380363390</td>
<td>16,73 %</td>
<td>48658</td>
</tr>
<tr>
<td>221</td>
<td>Vinice</td>
<td>13,2</td>
<td>839799</td>
<td>0,04 %</td>
<td>137</td>
<td>839799</td>
<td>0,04 %</td>
<td>137</td>
</tr>
<tr>
<td>222</td>
<td>Ovocné sady a plantáže</td>
<td>12,2</td>
<td>11993486</td>
<td>0,53 %</td>
<td>1809</td>
<td>13611442</td>
<td>0,60 %</td>
<td>2052</td>
</tr>
<tr>
<td>231</td>
<td>Louky a pastviny</td>
<td>30</td>
<td>116978245</td>
<td>5,15 %</td>
<td>43376</td>
<td>326252593</td>
<td>14,35 %</td>
<td>120974</td>
</tr>
<tr>
<td>242</td>
<td>Mozaika polí, luk a trvalých kultur</td>
<td>13,05</td>
<td>7516964</td>
<td>0,33 %</td>
<td>1212</td>
<td>7516964</td>
<td>0,33 %</td>
<td>1212</td>
</tr>
<tr>
<td>243</td>
<td>Převážné zemědělské areály s přír. veg.</td>
<td>20,05</td>
<td>233424655</td>
<td>10,27 %</td>
<td>57847</td>
<td>239462494</td>
<td>10,53 %</td>
<td>59343</td>
</tr>
<tr>
<td>311</td>
<td>Listnaté lesy</td>
<td>41,13</td>
<td>189740137</td>
<td>8,35 %</td>
<td>96458</td>
<td>195944528</td>
<td>8,62 %</td>
<td>99612</td>
</tr>
<tr>
<td>312</td>
<td>Jezírenaté lesy</td>
<td>21,97</td>
<td>132557473</td>
<td>5,83 %</td>
<td>35996</td>
<td>139124409</td>
<td>6,12 %</td>
<td>37779</td>
</tr>
<tr>
<td>313</td>
<td>Smíšené lesy</td>
<td>29,63</td>
<td>250538725</td>
<td>11,02 %</td>
<td>91754</td>
<td>294749611</td>
<td>12,96 %</td>
<td>107945</td>
</tr>
<tr>
<td>321</td>
<td>Přírozené louky</td>
<td>30</td>
<td>9426720</td>
<td>0,41 %</td>
<td>1212</td>
<td>18954220</td>
<td>0,83 %</td>
<td>7028</td>
</tr>
<tr>
<td>324</td>
<td>Přechodné lesoskroviny</td>
<td>31,7</td>
<td>367623250</td>
<td>16,17 %</td>
<td>144039</td>
<td>319359697</td>
<td>14,05 %</td>
<td>125129</td>
</tr>
<tr>
<td>411</td>
<td>Močály</td>
<td>28,82</td>
<td>251453</td>
<td>0,11 %</td>
<td>90</td>
<td>251453</td>
<td>0,11 %</td>
<td>90</td>
</tr>
<tr>
<td>412</td>
<td>Rašeliniště</td>
<td>58,92</td>
<td>11375469</td>
<td>0,50 %</td>
<td>8284</td>
<td>11375469</td>
<td>0,50 %</td>
<td>8284</td>
</tr>
<tr>
<td>511</td>
<td>Vodní toky</td>
<td>19,05</td>
<td>3667330</td>
<td>0,16 %</td>
<td>864</td>
<td>3667330</td>
<td>0,16 %</td>
<td>864</td>
</tr>
<tr>
<td>512</td>
<td>Vodní plochy</td>
<td>39,54</td>
<td>22832879</td>
<td>1,00 %</td>
<td>11159</td>
<td>22815680</td>
<td>1,00 %</td>
<td>11150</td>
</tr>
<tr>
<td>Podkrušnohoří celkem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100,00 %</td>
</tr>
</tbody>
</table>

Pramen: Vlastní propočty
6.3 Analýza disparit v pokryvu modelového území se situací v ČR

Podkrušnohoří – pánevní území přibližně 80 km od Ústí nad Labem ke Kadani, a do vnitrozemí cca 25–40 km - jakoby ani nebylo součástí české krajiny. Ryze utilitárně jako k území s velkými zásobami hnědého uhlí k němu bylo přistoupeno v průběhu německé okupace v období druhé světové války a zejména pak v období po druhé světové válce a po nastolení centrálně plánovaného ekonomického systému.

Stějně utilitárně z hlediska okamžitého zisku k němu i v současnosti přistupuje úzká vrstva vlastníků důlních společností vzniklých z problémové a sociálně ne-spravedlivé privatizace v průběhu 90. let. Kořistnický přístup k území pánevních okresů nadále převládá, a podle toho tak také vypadá. Zásoby hnědého uhlí - které se tu dovalo od 17. století v dokonalé symbiose s krajinou a zemědělstvím, jak to naši předkové uměli - způsobily od druhé poloviny 20. století totální devastaci krajiny.

Území čtyř podkrušnohorských okresů má rozlohu 2273 km², což představuje pouhá 2,88 % z rozlohy České republiky. Severní polovinu modelového území tvoří jižní svahy Krušných hor, které jsou z jižní strany ohraničeny linií mezi Chomutovem, Litvínovem a Krupkou.

Jižní, pánevní polovinu modelového území představuje krajina výrazně ovlivňovaná působením mnoha desítek lidských generací. Po většinu lidské historie v modelovém území šlo o využívání především zemědělské, sloužící k bezprostřední obživy místních obyvatel.

Toto území mezi Krušnými horami a Českým středoohořím, které by při přírodním, sucesním vývoji bylo krypto vegetaci dubohabřin a doubrav a v neposlední řadě i mokřadními biotopy, bylo odedávna územím s lidským osídlením. Nálezy ukazují, že od 6. tisíciletí př. n. l. byla oblast páně kontinuálně a nejméně od konce neolitu, tedy od 4. tisíciletí př. n. l., i ve všech zemědělských obdělatelných částech tohoto území. Od těch dob až do středověku tu člověk přetvářel původní lesnatou a bažinatou krajinu na pestrou mozaiku se střídáním lesů, luk, pastvin, pólí, vodních ploch, toků, mokřadů, lidských sídel, cest, ostrých hradů, tržních a často i opevněných měst na křížovatkách obchodních cest, při brodech přes zdejší řeky a v těžištích zemědělských oblastí.

Lidé vždy měli tendenci mít sice vodu k dispozici pro své potřeby, ale zároveň ji plně neodváděli z území, aby vyloučili mokřadní mikroklima, vlhko a obtížný hmyz. Takže již např. v období vlády Karla IV., kdy na území dnešní ČR žilo přibližně 2 miliony obyvatel, byla významná část tohoto pánevního území přeměněna na zemědělsky a lesnicky obhospodařované plochy. To potvrzují i historické mapy z prvního a druhého vojenského mapování.

Hnedé uhlí se postupně stalo velmi žádanou surovinou. Jeho těžba narůstala a postupně vtiskla Podkrušnohoří charakteristický ráz, zvýšila však jeho průmyslový význam. Po vzniku samostatného Československa produkce uhlí vysoce překračovala domácí spotřebu a možnosti vývozu byly omezené. Velká hospodařská krize dolehla na region severozápadních Čech velmi těžce. Po obsazení Sudet německou armádou se Podkrušnohorské již důležitým centrem válečného hospodářství. Téměř všechny uhelné doly ovládla německá akciová společnost SUBAG.

Po skončení 2. světové války mohly být zvýšené potřeby hospodářství uspokojovány pouze radikální změnou způsobu těžby uhlí. Hlubinné doly postupně ustupovaly povrchové těžbě založené na velkolomech s výkonnými velkostroji. V roce 1950 bylo v oblasti Severočeského hnědouhelného revíru (SHR) vytěženo 20 milionů tun hnedého uhlí, v roce 1960 již téměř 40 milionů tun, v 70. letech těžba přesahovala 60 milionů tun ročně a v polovině 80. let vrcholila na téměř 75 milionech tun za rok.

Po přechodu na tržní ekonomiku na počátku 90. let minulého století postupně roční těžba hnedého uhlí poklesla na dnešních cca 40 mil. tun. Dobývání se soustředilo do čtyř povrchových velkolomů Libouš, Bílina, Vršany a ČSA ve vlastnictví těžebních společností Severočeské doly, a.s. a Mostecká uhelná, a.s. Největším povrchovým dolom oblasti i celé České republiky se stal důl Bílina s délkou porubní fronty cca 5 km, mocností nadloží cca 200 m a mocností uhelného sloje cca 30 m.
Obr. č. 28 - Mapa povrchových lomů a výsypek v modelovém území podkrušnohorských okresů

Pohled na výše uvedenou mapu severočeské hnědouhelné pánve dokazuje, že toto pánvnické území bylo za poslední půlstoletí zásadním způsobem lidsmi devastováno. Území vyhrazené k těžbě a území pro výsypky tvoří významnou část celkové rozlohy modelového území.

I když podle údajů satelitního snímkování tvoří areály těžby a areály skládek dohromady necelých 7 % modelového území, pohled na výše uvedenou mapu ukazuje, že prostory vyhrazené pro těžbu a výsypky jsou výrazně větší a tvoří nejméně cca pětinu modelového území, na mostecku a bílinskou pak je podíl ještě větší. Nicméně, už i oficiální údaje ze satelitního snímkování ukazují, že výměra těžebních prostor a výsypek je v modelovém území pětinásobně větší (6,71 %) než činí jejich podíl ve struktuře území České republiky (0,43 %).
Tudíž, první výraznou disparitou modelového území je jeho výrazně vyšší míra antropogenezace než činí průměr v České republice. Kdybychom chtěli vyjádřit řádové ekologické újmy vzniklé z těchto velkoplošných destrukcí území, k tomu lze použít někdejší tzv. „velkou variantu těžby“, vypracovanou někdy v r. 1977 a prosazovanou Federálním ministerstvem paliv a energetiky (FMPE), která by znamenala devastaci širokého a neporušeného pásu Podkrušnohoří od Klášterce nad Ohří až po Ústí nad Labem, a která by dokonce na jihozápadním okraji SHP zasáhla do dosud neporušené krajině Pětipské pánev.

Vezmeme-li v úvahu, že mělo dojít k převrácení cca 2 tisíc km² modelového území, které v přírodní podobě bylo pokryto vegetací doubrav a dubohabřin, potom celková ekologická újma (škoda na funkcích a službách ekosystémů; ztráta nebo oslabení přirozených funkcí ekosystému, vznikající poškozením jejich složek nebo narušením vnitřních vazeb a procesů v důsledku lidské činnosti. Blíže je určena v zákonu č. 17/1992 Sb., o životním prostředí), která by vznikla reali-
zací této „velké varianty těžby“, by představovala celkovou veličinu ekologické újmy na hladině

\[2 \times 10^9 \text{ m}^2 \times \text{cca 49 bodů} \times 12,36 \text{ Kč/bod} = 1 \text{211 mld. Kč} \]

Jak podle nové Směrnice EU o škodách na životním prostředí 2004/35/CE, tak zejména podle Obnovené strategie EU pro udržitelný rozvoj by tato ekologická újma na kvalitě životního prostředí měla být nahrazena těmi, kdo ji působí a stejně tak by měla být hrazena přechodná újma ze škod, které vznikají přechodným vyřazením ekosystémů než budou navráceny po ukončení těžeb do jejich původní ekosystémově funkční podoby.

6.3.1 Další územní disparity modelového regionu v porovnání s ČR

Zatímco podíl nesouvislé městské zástavby je v modelovém území prakticky totéžný s podílem v rámci celé ČR, potom podíl průmyslových a obchodních areálů převyšuje celostátní podíl o jeden procentní bod (1,68 % oproti 0,69). Podobně zvýšený je i podíl silniční a železniční sítě v modelovém území oproti celostátnímu podílu (0,42 % proti 0,06 %).

Již jsme již uvedli výše, areály těžby a skládek dosahují v modelovém území téměř 7 %, zatímco v celostátní struktuře je to pouhých 0,4 %. **Rozloha území devastovaného těžbou a výsypkami je v modelovém podkrušnohorském regionu téměř dvacetinásobně vyšší** (přesně 17,5 krát vyšší) než činí podíl těžeb a výsypek v rámci území ČR.

Zcela opačná je situace v oblasti podílů výměr orné půdy, jejíž podíl v celostátní struktuře zvýšil se v r. 1990 více jak 45 %, v modelovém území však jen 26,5 %. Přítom dochází k trvalému celostátnímu poklesu podílu orné půdy, který v celostátní struktuře klesl v r. 2000 na 41,4 %, v modelovém území ovšem klesl v r. 2000 mnohem výrazněji ze zmíněných 26,5 % na pouhých 16,7 %.

S nástupem liberální tržní ekonomiky **od počátku 90. let zemědělství na orné půdě ztratilo v modelovém území svou určující roli**, oproti svému významnému podílu v celém období od středověku až do konce 80. let minulého století.

Podíl luk a pastvin vzrostl od roku 1990 celostátně více jak dvojnásobně, z 3,2 % na 6,7 %. V modelovém území však byl nárůst téměř trojnásobný, z 5 % na téměř 15 %. Tento vývoj ovšem signalizuje v modelovém regionu závažnou **strukturalní disparitu mezi rostlinnou a živočišnou výrobu**, protože je z oficiální statistiky známo, že stav bydliště dělníků ze zemědělství, které nezajišťují životní podmínky, které nezajišťují možnost zužitkování biomasy vytvářené na loukách a pastvinách.
Podíl lesů je v modelovém podkrušnohorském regionu relativně nižší než činí celostátní podíl (cca 25 % oproti celostátnímu podílu 32 %). Připočteme-li však výměru přechodných leso-křovin, potom podíl se v modelovém území zvyšuje na téměř 41 % (40,8 %, čili podíl leso-křovin činil v modelovém regionu 16,2 %), zatímco v celostátní struktuře činily v r. 1990 přechodné leso-křoviny jen 3,2 %.

Znamená to, že hodnocené modelové území podkrušnohorských okresů vykazuje mnohem vyšší podíl přechodných forem dřevinné vegetace, což je nepochozdeno nejen vysokou mírou poškození a úhynem původních lesů a následnou obnovou dřevinné vegetace

Jak na svazích Krušných hor, tak v revitalizovaných pánevích částech.

Rovněž je třeba zdůraznit, že modelové území vykazuje oproti celostátní struktuře významně vyšší podíl rašelinišť a vodních ploch. Jde o přirozenou pramennou oblast a tuto skutečnost je třeba významně promítout do metodických postupů při řešení všech environmentálních disparit modelového území a s tím spjatých sociálně-ekonomických problémů podkrušnohorského regionu.

6.3.2 Analýza změn územního pokryvu modelového regionu (CLC 1990 a 2000)

Vedle globálních klimatických změn, které představují potenciální hrozbu pro budoucí generace (tj. pro druhou polovinu tohoto a začátek příštího století) velmi nebezpečnou formu získala globalizace zejména v posledním desetiletí ve svém vlivu na primární sektor národních ekonomik, tj. zejména na zemědělství, které v hustě osídlených evropských ekonomikách hospodaří na většině území těchto národních států.

Je naprosto paradoxní, že zemědělství, které zajišťuje výživu (energi) pro přežití 6,5 miliardy lidí a poskytuje nám další pro život nezbytné suroviny a materiály, je v současných národních ekonomikách z tržních přímů nesoběstačné a vytrženo zcela na okraj ekonomického systému.

Podíl zemědělství na tvorbě HDP (základní ukazatel úspěšnosti fungování tržní ekonomiky) klesl na jednotky procent a v některých zemích dokonce na jedno procento (např. D,GB, B).

Přitom ve spotřebním koši konzumentů ve vyspělých zemích představují potravinové náděle až třetinu z celkových spotřebních výdajů a v rozvojovém světě je to daleko víc (až 80 %). Např. v ČR se tento podíl výdajů pohybuje od 15 až do 33 % (blíže viz Seják, Zavíral 2007).

Jak se projevuje dopady hospodářské reformy a z ní plynoucí globalizace a zneužitá tržní moc obchodními řetězci ve redukcí zemědělské výroby v oblasti.
čtyř podkrušnohorských okresů? Na to odpoví řešitelé projektu v dalších fázích výzkumu.

Tabulka č. 35 - Příloha č. 1 - Struktura přírodního kapitálu území České republiky (hodnocení na základě BVM a položek CLC 2000)

<table>
<thead>
<tr>
<th>TAG</th>
<th>popis</th>
<th>1990</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>plocha v m²</td>
<td>v %</td>
<td>Př.kap.mld.Kč</td>
</tr>
<tr>
<td>111</td>
<td>Souvislá městská zástavba</td>
<td>14636295</td>
<td>0,02 %</td>
</tr>
<tr>
<td>112</td>
<td>Nesouvislá městská zástavba</td>
<td>3578496238</td>
<td>4,54 %</td>
</tr>
<tr>
<td>121</td>
<td>Průmyslové a obchodní areály</td>
<td>521195182</td>
<td>0,66 %</td>
</tr>
<tr>
<td>122</td>
<td>Silniční a železniční síť s okolím</td>
<td>48074006</td>
<td>0,06 %</td>
</tr>
<tr>
<td>123</td>
<td>Prístavy</td>
<td>1502605</td>
<td>0,00 %</td>
</tr>
<tr>
<td>124</td>
<td>Letiště</td>
<td>56090251</td>
<td>0,07 %</td>
</tr>
<tr>
<td>131</td>
<td>Areály těžby nerostných surovin</td>
<td>180628314</td>
<td>0,23 %</td>
</tr>
<tr>
<td>132</td>
<td>Areály skladek</td>
<td>154614202</td>
<td>0,20 %</td>
</tr>
<tr>
<td>133</td>
<td>Areály výstavby</td>
<td>21241328</td>
<td>0,03 %</td>
</tr>
<tr>
<td>141</td>
<td>Areály městské zeleně</td>
<td>65255910</td>
<td>0,08 %</td>
</tr>
<tr>
<td>142</td>
<td>Areály sportu a zaříz. pro volný čas</td>
<td>117709796</td>
<td>0,15 %</td>
</tr>
<tr>
<td>211</td>
<td>Nezavlažovaná orná půda</td>
<td>35541028363</td>
<td>45,06 %</td>
</tr>
<tr>
<td>221</td>
<td>Vinice</td>
<td>110769783</td>
<td>0,14 %</td>
</tr>
<tr>
<td>222</td>
<td>Ovocné sady a plantáže</td>
<td>328213188</td>
<td>0,42 %</td>
</tr>
<tr>
<td>231</td>
<td>Louky a pastviny</td>
<td>2527624676</td>
<td>3,20 %</td>
</tr>
<tr>
<td>242</td>
<td>Mozaika polí, luk a trvalých kultur</td>
<td>415342919</td>
<td>0,53 %</td>
</tr>
<tr>
<td>243</td>
<td>Převážné zeměd. areály s přír. veg.</td>
<td>673617720</td>
<td>8,54 %</td>
</tr>
<tr>
<td>311</td>
<td>Listnaté lesy</td>
<td>2495242841</td>
<td>3,16 %</td>
</tr>
<tr>
<td>312</td>
<td>Jíhoničnaté lesy</td>
<td>16552101333</td>
<td>20,99 %</td>
</tr>
<tr>
<td>313</td>
<td>Smíšené lesy</td>
<td>5854941641</td>
<td>7,42 %</td>
</tr>
<tr>
<td>321</td>
<td>Přirozené louky</td>
<td>404643097</td>
<td>0,51 %</td>
</tr>
<tr>
<td>322</td>
<td>Vřesoviště a slatiny</td>
<td>26523358</td>
<td>0,03 %</td>
</tr>
<tr>
<td>324</td>
<td>Přechodné lesno-křoviny</td>
<td>2486742958</td>
<td>3,15 %</td>
</tr>
<tr>
<td>332</td>
<td>Skály</td>
<td>2098600</td>
<td>0,00 %</td>
</tr>
<tr>
<td>334</td>
<td>Spalena vegetace</td>
<td>1171728</td>
<td>0,00 %</td>
</tr>
<tr>
<td>411</td>
<td>Močály</td>
<td>53536814</td>
<td>0,07 %</td>
</tr>
<tr>
<td>412</td>
<td>Rašeliniště</td>
<td>37498603</td>
<td>0,05 %</td>
</tr>
<tr>
<td>511</td>
<td>Vodní toky</td>
<td>42804579</td>
<td>0,05 %</td>
</tr>
<tr>
<td>512</td>
<td>Vodní plochy</td>
<td>492894248</td>
<td>0,62 %</td>
</tr>
</tbody>
</table>

ČR celkem | 78868800126 | 100,00 % | 17 054 214 449 018 | 100,00 % | 17 646 652 590 330 |

Pramen: Seják, Dejmal a kol. 2003
7 Socioekonomická charakteristika modelového území

7.1 Obyvatelstvo: stav, struktura a vývoj

Populační vývoj v severozápadních Čechách se vyznačuje určitými specifikami: jmenujeme alespoň předválečné a především poválečné přesuny obyvatelstva s dopadem na dnešní strukturu, industrializaci pánev oblastí v socialistickém období (po roce 1945 resp. 1960) doprovázenou intenzivní bytovou výstavbou. Nicméně i zde se projevují celestátní trendy polistopadového vývoje, např. snížení úmrtnosti a potratovosti na straně jedné a zvýšení průměrného věku obyvatelstva, věku matek při prvním porodu či podíl dětí narozených mimo manželství. U některých ukazatelů tak můžeme konstatovat, že jejich úroveň resp. vývoj oproti republikové hodnotě se „radikalizoval“.

7.1.1 stav

V oblasti Severočeské hnědouhelné pánve žije bezmála 490 tisíc obyvatel, což je zhruba 60 % obyvatel Ústeckého kraje. Podle počtu obyvatel ve správních obvodech SHP (Ústeckého kraje) dominuje Ústí n. L., následují další obvody s bývalými okresními městy (v pořadí Teplice, Chomutov, Most). Počet obyvatel se v posledním pětiiletí (2000-2005) změnil jen nepatrně (index se pohybuje mezi 99,5 u Mostu po 101,5 u Teplic).

7.1.2 struktura

Pro celé území je charakteristická existence celkově mladší populace než jakou nalézám v ČR jako celku. V průběhu posledních 15 let se značně snížily podíly dětí do 15 let, a to ve všech správních obvodech, zvýšily se podíly produktivní složky obyvatelstva i poproduktivní složky. Ve struktuře podle věku dominuje produktivní skupina – vesměs přes 70 % 15-64-letých. Věková struktura – při sledování ekonomických věkových skupin 0-14, 15-64, 65 a více let – zjišťujeme značnou rozmanitost. Nejmladší populace má Bílina: index stáří (poměr skupin 65 a více let ku 0-14 let) 64,9, nejstarší obyvatelstvo je v Litvínově – 92,9, tedy téměř shodné zastoupení obou krajních věkových skupin. Podle průměrného věku je nejmladším SO ORP v kraji Kadaň (37,9 let), což je o bezmála 3 roky nižší než v nejstarších Lovosicích (40,7 let).

Z pohledu vzdělanostní struktury Ústecký kraj, jakož i pánev oblast, za republikovým průměrem zastává. Nejvýraznější je tomu u vysokoškoláků: výsledky SLDB 2001 dokládají v ULK jako celku o 3,5 % bodů nižší hodnotu (5,4 oproti 8,9 %). Republikové hodnotě se přibližuje pouze Ústí n. L. (8,5 %), ostatní SO ORP více či méně zaostávají (Bílina 2,9 %). Podíl obyvatelstva s úplným
středním vzděláním s maturitou i podíl vysokoškolsky vzdělaných obyvatel se trvale zvyšuje.

Stabilita obyvatelstva na komunální/lokální úrovni (podíl obyvatel narozených v obci) v páni je zcela shodná s krajem – 44,6 resp. 44,7 % obyvatel se narodilo v obci současněho bydliště (SLDB 2001). Další desetina až šestina pochází z jiné obce SO ORP.

V pánevní oblasti bylo k 31. 12. 2005 evidováno 13,5 tisíc cizinců (60,8 % krajské hodnoty). V absolutním i relativním vyjádření obsadily první místa obvody Ústí n. L. a Teplice; podle státního občanství dominovali Ukrajinci a Vietnamci.

7.1.3 přirozená měna

Porodnost v letech 2000-2005 rostla ve všech správních obvodech Ústeckého kraje (s výjimkou Lovosic a Loun mimo pánevní oblast). Krajskou hodnotu však převyšují jen Ústí n. L. a Bílina, všechny pánevní SO ORP s výjimkou Litvínova překračují 10 ‰. Téměř polovina dětí se narodí mimo manželství (sezdaný pár), v Mostě, Litvínově a Kadani je to dokonce více. Plodnost v letech 2001-2005 byla nejvyšší v Bílině, jen nepatrně nižší se vyznačovalo Ústí n. L. (1,40 resp. 1,38 dítěte). Ostatní pánevní obvody nedosahovaly krajský průměr (1,30).

Ústecký kraj a pánevní oblast řadíme mezi oblasti s vysokou potratovostí ve vyjádření relativním i ve vztahu k porodnosti – index potratovosti. Nejvyšších hodnot dosahuje Bílina, Teplice a Ústí n. L. – až 2/3 z počtu živě narozených.

Při hodnocení úmrtnosti (při využití metody standardizace populace) nenalezneme ani jediný obvod, který by měl hodnotu pod celorepublikovým průměrem. Obvody s nižší úmrtností vytvářejí souvislé území procházející krajem od severovýchodu na jih, sem ovšem modelová pánevní oblast nepatří. Situace v mortalitě (zemřeli na 1000 obyvatel) je poměrně vyrovnaná: od krajské hodnoty (10,9 ‰) se významněji odlišuje, a to v negativním smyslu pouze Litvínov a Teplice. Zhruba polovina lidí umírá na nemoci oběhové soustavy, další čtvrtina pak na novotvary.

Krajskou hodnotu sňatečnosti (5,3 ‰ v průměru let 2001-2005) přesahuje pouze Ústí n. L., pro pánevní oblast jsou tedy příznaky podprůměrné hodnoty (minimum Litvínov (4,6 ‰)). Naproti tomu rozvodovost je zpravidla nad krajskou hodnotou 3,8 ‰: nejvyšší v ULK v Mostě (4,3), nejnižší v Litvínově (3,6 ‰). Index rozvodovosti potvrzuje nízkou stabilitu manželství v této oblasti: tři ze čtyř jsou ukončena rozvodem. Přes výrazný pokles potratů po roce 1989 připadá na 100 živě narozených dětí 55 potratů.

V Ústeckém kraji v roce 2005 obyvatelstvo přirozenou měnou můžeme ubyto, v oblasti Severočeské hnědouhelné pánve v podstatě stagnovalo. Výraznější
změnu za spádové obvody ORP zaznamenalo v kladném smyslu Ústí n. L., v záporném pak Teplice a Litvínov.

Přirozený přírůstek za léta 2001-2005 je za kraj a naprostou většinu sledovaných správních obvodů záporný: ULK -0,9 ‰, kladnou hodnotu má ze 16 jednotek pouze Bílina a Ústí n. L. (0,7 resp. 0,3 ‰). Migračním saldem kraj naopak získal, vývoj za SO ORP pánve i kraje byl značně diferencován: maximální zisk v Teplicích 5,0 ‰ (Roudnice n. L. 5,6 ‰), ztráta v Bílině (-1,7 ‰).

7.1.4 migrační pohyb

7.1.5 celkový přírůstek

Kladnou hodnotu celkového přírůstku mají především Teplice (3,0 ‰ v roce 2005, blíží se první Roudnici n. L. s 3,9 ‰), opačný extrém zastupuje Bílina (-1,0 ‰, a Žatec -1,4 ‰). Migrační přírůstek až na několik výjimek kompenzoval úbytek obyvatel přirozenou měnou.

7.1.6 syntetické vyjádření

Na základě tzv. **indexu demografické nestability**, zahrnujícího natalitu, mortalitu, průměrný věk, index potratovosti a rozvodovost, lze vymezen v rámci Ústeckého kraje některé specifické oblasti. Např. pro správní obvody bývalých okresních měst platí nadprůměrně vysoká rozvodovost, vyšší potratovost (s výjimkou Litoměřic) a průměrný věk v Mostě (a Lounech). S pozitivním vývojem se setkáváme zejména v okrajových částech SO ORP Chomutov a Ústí n. L.

7.1.7 sociálně patologické projevy

Kriminalita bývá označována za jeden z charakteristických znaků Ústeckého kraje a pánevní oblasti zvláště. Nejvyšší podíly zjištěných trestných činů na 100
obyvatel se týkají Teplic (50,1 za rok 2005), Ústí n. L. a Mostu. Téměř 2/3 připadají na majetkovou kriminalitu, kde se uplatňují především prosté krádeže a krádeže vloupáním.

7.1.8 dlouhodobý vývoj počtu obyvatel

Graf č. 23 -

Pramen: Statistické ročenky ČSÚ
7.2 Trh práce, zaměstnanost a nezaměstnanost

7.2.1 ekonomická aktivita

Počet ekonomicky aktivních v oblasti SHP dosahuje 254 tisíc osob, což odpovídá proporčně podílu na obyvatelstvu. **Míra ekonomické aktivity**, specifikovaná jako podíl pracovní síly na počtu osob starších 15 let, poklesla mezi posledními sčítáními lidu (1991 až 2001) téměř o 6 % bodů. Přesto přinejmenším přesahuje 60 % (Litvínov), maximální hodnotu zaznamenáváme v Kadani (65,1 %). U mužů se v kraji snížila o 3,8 % (zpravidla přesahují 70 %), zatímco u žen radiálně o 7,6 % (kolísají kolem 50 %). Důvody poklesu specifikujeme jako metodické změny, pokles ekonomicky aktivních obyvatel mladšího věku z důvodu prodloužení doby studia a času přípravy na budoucí povolání, v neposlední řadě nástup a růst nezaměstnanosti.

7.2.2 odvětvová struktura

V roce 2001 se k zemědělství, lesnictví a rybolovu přihlásilo pouze 1,9 % EA. Absolutně nejvyšší propad v Podkrušnohoří zaznamenal průmysl (se stavebnictvím, to zůstalo v podstatě zachováno), a to o téměř 42 tisíc EA. Služby se staly vedoucím sektorem s podílem 55,3 % EA.

Index ekonomického zatížení, jako podíl obyvatel ve věku 0-14 a 65 a více let na ekonomicky aktivních osobách celkem, se také snížil. V roce 2001 za ULK činil 56 %, pohyboval se mezi 52,3 % v Kadani a 60,5 v Lovosicích resp. 57,4 v Teplicích.
7.2.3 pohyb za prací

Kladná **sald**a dojížďky za prací (SLDB 2001) týkala SO ORP s významnou pracovní funkcí, tj. Ústí n. L. (zisk 1870 osob), Bílina, Most a Litvínov. Více obvodů Ústeckého kraje, včetně pánevních Chomutov (ztráta 3633 osob), Kadaň a Teplice (ztráta 4249 osob), však vykazovalo převahu vyjížďůkdy nad dojížďkou. Vedle 16 sídel ORP byla mezi 19 největších center dojížďky za prací další tři pracovní centra (v pánevní oblasti Dubí a Trmice). Dominantním odvětvím dojížďkých je průmysl. Z poměru mezi ekonomicky aktivními obsazenými pracovními místy díky dojížďce zjišťujeme míru **pracovní funkce** daného sídla. Nejvyšší hodnotu identifikujeme pro Bílinu (1164 PM na 1000 EA), Litvínov, Most a Ústí n. L. dosahuje hodnotu zhruba o 120 nižší.

Při hodnocení pohybu za prací na úrovni okresů můžeme konstatovat, že situace v rozsahu a poměru mezi dojížďkou a vyjížďkou (směry, saldo kladné resp. záporné) je poměrně stabilní. Celkově Ústecký kraj je dlouhodobě **závěry**: Podkrušnohorský, Kadaň u Předního Dubí a Teplice. Dominantním odvětvím dojížďjících je průmysl. Z poměru mezi ekonomicky aktivačními a obsazenými pracovními místy zjišťujeme míru **pracovní funkce** daného sídla. Nejvyšší hodnotu identifikujeme pro Bílinu (1164 PM na 1000 EA), Litvínov, Most a Ústí n. L. dosahuje hodnotu zhruba o 120 nižší.

7.2.4 nezaměstnanost

Počínaje rokem 1995 vyznačuje se Ústecký kraj, zejména díky pánevní oblasti, nejvyšší mírou (registrované) nezaměstnanosti ze všech krajů Česka. Ke konci roku 1995 činila **míra nezaměstnanosti** za ULK 16,53 %, přičemž ze 7 SO ORP s nadprůměrnou hodnotou byly 4 v oblasti SHP (Litvínov a Most dokonce přesáhly 20 %). V absolutním vyjádření to bylo více než 70 tisíc uchazečů o zaměstnání, přes polovinu z nich je evidována déle než jeden rok. Ve vývojovém pohledu – v porovnání roku 2005 a 2000 – došlo k vyššímu nárůstu mimo pánevní oblast. Ve všech obvodech se snížil podíl nejmladší věkové skupiny nezaměstnaných do 24 let, zatímco podíl uchazečů nad 50 let se opět ve všech obvodech zvýšil.

V Modelovém území je zhruba 45 tisíc evidovaných **uchazečů o zaměstnání**, tj. v relativním vyjádření o 4% body více než odpovídá podílu SHP na ekonomicky aktivním obyvatelstvu Ústeckého kraje. Míra nezaměstnanosti pouze v Teplicích a Ústí n. L. je nižší než v kraji (16,53 %), v Litvínově a Mostě naopak dosahuje pětinu až čtvrtinu z práceschopněho obyvatelstva. Dlouhodobě nezaměstnaní (nad 12 měsíců) zpravidla tvoří více než polovinu všech nezaměstnaných. **Počet uchazečů na jedno volné místo** je v Litvínově enormně vysoké (118 osob!). Nejnižší míru nezaměstnanosti mají obvody Ústí nad Labem a Teplice. Nabídka
v jejích centrech přiznivě ovlivňuje i situaci v obvodu Bílina, který sám má velmi nízkou nabídku pracovních míst ve vztahu k poptávce.

7.2.5 mzdová úroveň

7.3 Ekonomika – výrobní sféra

7.3.1 zemědělství a lesnictví

Zatímco v kraji zaujímá zemědělská půda zhruba polovinu rozlohy, v pánvi je to jen 38 %. Relativně nejvíc ji je v Kadani, Mostu a Ústí n. L., v Litvínově však jen něco přes desetinu. Podíl lesních pozemků je naproti tomu vyšší o více než 5% bodů a dosahuje 35 %. Podle správních obvodů však můžeme identifikovat značné rozdíly, když rozpětí je stanoveno minimem 7,4 % pro Most a maximem 58,4 % pro Litvínov. Obdobné rozdíly panují i pro podíl orné půdy na zemědělské půdě (27 % Litvínov až 81,7 % Most), tedy SO ORP na sebe navazující.

Zastoupení zemědělské půdy celkem (2005) je zde výrazně nižší než v rámci kraje a to pouze 38,26 % (celý kraj 52,01 %), obdobně podíl orné půdy na zemědělské půdě (20,56 resp. 34,78 %). Relativně nejvíce zemědělské půdy má okres Ústí nad Labem, nejvyšší podíl orné půdy na zemědělské půdě je překvapivě v Mostě. Nezemědělská půda tvoří nejen přes 61 % území (kraj 48 %), dominuje zde i zastoupení ostatních ploch (22,47 % celé výměry území, s extrémy okres a SO ORP Most 34,14 resp. 43,03 %).

Specifikem Podkrušnohoří jsou jednak plochy po rekultivacích a dále problematika (ne)návaznosti zemědělské produkce na její zpracování. Mnohé potravinářské kapacity po zanikly (např. jatka, moštárny apod.) a tím se umocnil problém

Struktura, funkční význam a hospodaření v lesích páněvni oblasti jsou specifického rázu. Zatímco v rámci Ústeckého kraje dominují hospodářské lesy, v páněvních okresech mimo Ústí nad Labem jsou nejvíce zastoupeny lesy zvláštního určení především s funkcí ochrannou (ochrana půdy, spodních vod, klimatická a krajinotvorná funkce). Patří sem mimo jiné i lesy velkoplošných chráněných území. Třetí kategorií lesů v území jsou lesy ochranné, které se nacházejí na prudkých srázech, stržích a bývalých rekultivovaných výsypkách.

7.3.2 průmysl

Průmyslová základna zaznamenala za posledních 15 let nejvýraznější změny. Z absolutního hlediska došlo k nejvýraznějšímu poklesu v zaměstnanosti ze všech sektorů hospodářství. Příčinou je jednak restrukturalizace vlastních podniků, které se postupně zbavily méně efektivních výrobů a služeb a dále zánik mnoha podniků ve velmi tvrdém konkurenčním prostředí otevřeného trhu. Těžkým průmyslu zůstávají z hlediska lokalizace a to i v rámci krajského pohledu okresy Most a Chomutov. Zde nacházíme největší podniky podle počtu zaměstnanců a produkce.

Průmysl je v Severočeské hnědouhelné páni (v širším vymezení ve 4 okresech resp. 7 SO ORP) soustředěn ve 441 podniku s 20 a více zaměstnanci, přičemž téměř polovina jich jde o Ústí n. L. a Teplicích. Podle počtu zaměstnanců jich zhruba po pětině připadá na Ústí n. L. a Most, méně než desetinou se podílí Bílina. Průměrná měsíční mzda ve čtyřech sledovaných jednotkách nedosahuje krajské hodnoty – nejméně dostávají pracovníci v průmyslu v Teplicích (0,93), nejlépe jsou hodnocení v Litvinově (1,29).

U ekonomicky aktivních pracujících v průmyslu dominují Bílina (a Varnsdorf) s více než 40% podílem, krajskou hodnotu (28,7 %) překračují i Chomutov, Litvinov a Most. Sledujeme-li zastoupení těžkého průmyslu, pak nad krajským průměrem (16,7 %) jsou všechny SO ORP (s výjimkou Ústí n. L.) páněvní oblasti. První je opět Bílina, tentokrát ovšem ostatním „uskočila“ – od druhé Kadaně ji dělí 10 % bodů, oproti průměru je hodnota dvojnásobkem. Podle průmyslových odvětví je patrné, že každému resp. většině SO ORP přináleží typické zaměření. Nejvyšší míru specializace vykazuje Bílina (dobývání nerostných surovin a výroba ostatních nekovových minerálních výrobků – 39,3 + 30,3 %), sledovaná (Varnsdorferm) a Litvinovem (výroba chemických výrobků 40,3 %),
Porovnáme-li odvětvovou strukturu v jednotlivých obvodech se strukturou Ústeckého kraje, zjišťujeme na základě dat ze SLDB 2001, že nejméně podobná je struktura právě v Bílině. Plná polovina ekonomicky aktivních by musela změnit své zařazení, aby měla shodnou strukturu s krajem. Naopak nejpodobnější strukturu mají Teplice, Chomutov, (Roudnice n. L.) a Kadaň, odlišují se jen ve 25 %.

Průmyslová produkce resp. její hodnota v jednotlivých SO ORP je podmíněna jejich zaměřením. Díky „výnosnosti“ chemického průmyslu má mimořádné postavení Litvínov, když se podílí na celkové hodnotě kraje více než třetinou (102,8 miliardu Kč v roce 2005). Druhé Ústí n. L. má méně než třetinu této hodnoty, třetí Chomutov a Kadaň, odlišují se jen ve 25 %. Velikostí vědou společnost Motecká uhelná, a.s. a Severočeské doly, a.s., které spolu s Chemopetroleum Litvínov z hlediska tržeb průmyslu dosahují téměř 75 % kraje.

Průměrná měsíční mzda pracovníků v průmyslu poměrně značně kolísá, a tak krajský průměr (4. nejvyšší v ČR) 18 354 Kč (2005) není příliš reprezentativní. Prvenství patří opět Litvínovu (23 683 Kč), nejméně z pánevních obvodů májí Teplice (17 057 Kč), což je ale podstatně více než krajské minimum pro Rumburk (13 301 Kč). Do určité míry, vedle odvětvové specializace, se na dané situaci „podepisuje“ i velikostní struktura. Lepší postavení vykazují ty obvody, v nichž se prosazuje těžký průmysl a zároveň větší podniky a větší města.

7.3.3 stavebnictví a investice

z pánevních se jedná jen o Chomutov a Most. Nejnižší hodnotu vykazuje Bílina, a to zhruba polovinu kraje.

Zhruba zachován zůstal počet zaměstnanců, pohybuje se na úrovni 12 tisíc. Více než čtvrtina z nich připadá na SO ORP Most. V Teplicích a zejména v Ústí n. L. došlo k poklesu zaměstnanosti ve stavebnictví (index 97,5 resp. 79,5). Zvýšila se průměrná hrubá měsíční mzda, Ústí n. L. patří (za Litoměřicemi) druhá příčka (17 500 Kč), nejméně berou v Chomutově (15 129 Kč).

7.3.4 doprava

Krajskou hodnotu 78,2 km (2005) silnic a dálnic na 100 km² okresy Chomutov a Most (minimum 58,8 km) nedosahují, zatímco Teplice a zejména Ústí n. L. (maximum 93,3 km) ji překračují. Koncem roku 2006 byl v ústeckém okrese uveden do provozu další dálniční úsek (Ústí n. L. – státní hranice), čímž se převrství ještě zdůraznilo. V okresech Most a Chomutov nejsou ani dálnice, ani rychlostní komunikace. Tento nedostatek částečně vyrovnává čtyřproudá podkrušnohorská komunikace mezi Chomutovem a Bílinou, stejně jako v roce 2007 do provozu uvedené spojení z Chomutova směrem k hraničnímu přechodu Hora sv. Šebestiána. Ústecký kraj podílí silnic vysších tříd (12,7 %) v roce 2005) se pohybuje nad celorepublikovým průměrem.

Počet evidovaných dopravních prostředků dosáhl v Ústeckém kraji v roce 2005 téměř 463 tisíc, v pánevní oblasti pak 259 tisíc, tj. 56 % krajské hodnoty. Tomu odpovídá stupeň motorizace resp. automobilizace, když krajský průměr se rovná hodnotě 363 osobních automobilů na 1000 obyvateľ. Hodnoty pánevních okresů jsou, až na Chomutov s identickou hodnotou jako ULK, nižší.

7.4 Ekonomika – nevýrobní sféra

7.4.1 bytová výstavba a bydlení

Bytová výstavba, jako součást investiční výstavby, zaznamenala v posledním období v Ústeckém kraji i většině okresů oživení. Pozitivní vývoj lze sledovat zejména v Teplicích: z porovnání let 1996-2000 a 2001-2005 došlo k nárůstu zahájených i dokončených bytů zhruba o 40 %. Ostatní okresy se vyznačují dvěma odlišnými obdobími: v Chomutově došlo k úbytku zahájených bytů a nárůstu dokončených bytů (-36,3 vs. 45,0 %), v Mostě byl zaznamenán nárůst bytů
zahájených a stagnace dokončených (20,5 vs. 1,8 %), v Ústí n. L. totéž v „inverzním“ provedení (-1,6 vs. 36,6 %).

V přepočtu na 1000 obyvatel je nejvyšší tempo bytové výstavby v Teplicích a Chomutově (1,6 resp. 1,4), nejméně se naopak staví v Bílině, Mostě a Litvínově (0,5 resp. 0,4). Diference se vyskytuje i ve velikosti dokončených bytů, nejmenší jsou v Chomutově (66,7 m²), největší pak v Litvínově (103,4 m²). Výstavba v rodinných domech převládá (s výjimkou Teplic) ve všech sledovaných jednotkách, nejvyšší podíl vykazuje Most (76,2 %).

Plynulost bytové výstavby se hodnotí např. na základě poměru mezi byty dokončenými a zahájenými (20,5 vs. 1,8 %), v Ústí n. L. totéž v „inverzním“ provedení (-1,6 vs. 36,6 %).

V přepočtu na 1000 obyvatel je nejvyšší tempo bytové výstavby v Teplicích a Chomutově (1,6 resp. 1,4), nejméně se naopak staví v Bílině, Mostě a Litvínově (0,5 resp. 0,4). Diference se vyskytuje i ve velikosti dokončených bytů, nejmenší jsou v Chomutově (66,7 m²), největší pak v Litvínově (103,4 m²). Výstavba v rodinných domech převládá (s výjimkou Teplic) ve všech sledovaných jednotkách, nejvyšší podíl vykazuje Most (76,2 %).

Intenzitou bytové výstavby se Ústecký kraj řadí na poslední místo v Česku. S hodnotou 6 bytů na tisíc obyvatel pro období 2001-2005 nemůže konkurovat republicové hodnotě 14 bytů. Té se přiblíží pouze Kadaň (a Roudnice n. L.), na opačném pól Most dosahuje hodnoty pouze 2,5 bytu. Zdůvodnění hledejme v nižším zájmu o tuto oblast, zčásti možná i dostatkem vyhovujícího bydlení.

Průměrná **velikost** obytné plochy dokončených bytů dosahuje za léta 2001-2005 71,9 m²; největší nové byty jsou jednoznačně v Mostě (100 m²), v Bílině jsou však bezmála poloviční. Velikost bytu koresponduje s jeho hodnotou, variační rozpětí se pohybuje mezi 2471 a 839 tisíci Kč.

V pánevní oblasti je dle SLDB 2001 47,5 tisíc trvale obydlených domů, v nichž je umístěno 196 tisíc bytů. Vyšší podíl bytů oproti domům signalizuje, že jsou zde větší domy (domy s větším počtem bytových jednotek) než v jiných částech Ústeckého kraje. Relativní zastoupení trvale obydlených bytů podle SO ORP odpovídá populáční velikosti: Ústí n. L. se podílí téměř čtvrtinou, na druhé straně Bílina jen 4,3 %. Mimořádně vysoké zastoupení neobydlených bytů identifikujeme v Teplicích (30 % z SHP), na dalších místech jsou Ústí n. L. a zbývající okresní města. Oproti krajskému průměru se setkáváme s menším byty v Bílině a Ústí n. L. (a to v rodinných domech i v bytových domech); naopak větší jsou v Kadani a Litvínově (v RD). V ostatních SO ORP nejsou odchylky významné nebo mají opačný „směr“.

7.4.2 cestovní ruch

Přestože pánevní oblast zřejmě nepatří mezi atraktivní destinace, najdeme zde polovinu všech hromadných ubytovacích zařízení cestovního ruchu a lůžek
z Ústeckého kraje. Více než po čtvrtině zařízení připadá na Kadaň a Teplice, naproti tomu v Bílině jsou jen čtyři a v mostě sedm! Téměř třetinou lůžek z pánevní hodnoty disponují Teplice, čtvrtinou se podílí Kadaň. V podstatě symbolické zastoupení mají Bílina, Litvínov i Most. Nejdražší ubytování mají v průměru v Mostě, nejlevnější – zhruba poloviční – pak v Kadaní.

Ústecký kraj, a to včetně pánevních okresů disponuje nepochybně potenciálem cestovního ruchu, jeho využití však zdálo se zatím neodpovídajícím možnostem. V roce 2005 zaujímal Ústecký kraj v počtu hostů hromadných ubytovacích zařízení mezi kraji České republiky pozouní místě, podílel se jen 3,1 % na celkové návštěvnosti. Lépe je na tom u zahraniční klientely: 8. místo, podíl ovšem pouze 2,6 % z příjezdové turistiky.

Mezi léty 2000 a 2005 došlo k mírnému poklesu lůžek v kraji (index 89,3), v jednotlivých SO ORP však byla poměrně diferencována situace. Z pánevních správních obvodů ubylo zásadně lůžek v hromadných ubytovacích zařízeních cestovního ruchu v Mostě a Ústí n. L.: index 56,8 resp. 73,1, což v absolutním vyjádření znamená úbytek téměř 1100 lůžek (zhruba polovina krajské hodnoty).

7.4.3 školství

Počty dětí, žáků a studentů v předškolních a školských zařízeních odpovídají populací velikosti příslušných SO ORP.

Předškolní vzdělávání zajišťované mateřskými školami, stejně jako základní školství (1. -5. i 1. -9. ročník) zaznamenalo v posledních 5 letech pokles. V absolutních hodnotách došlo k nárůstu např. na Ústecku, naopak pokles byl zaznamenán na Teplicku a Mostecku.

V základním školství se rušila zařízení v některých malých obcích, což vedlo ke snížení vybavenosti obcí ZŠ v Ústeckém kraji ze 77,4 na 69,8 %. Redukce postihla i ZŠ 1. stupně, ve školním roce 2004/2005 je navštěvovalo jen 3,5 % všech žáků ZŠ. Zečela přítom chyběly na Bílinsku, Litvínovsku a Mostecku.

Střední školy jsou soustředěny do obvodů resp. sídel bývalého okresního města (v Ústeckém kraji 14 z 22 středních škol). Zatímco střední odborná učiliště a střední odborné školy nejsou zastoupeny v SO ORP Bílina (a SOŠ v Podbořanech), gymnázia jsou ve všech správních obvodech Ústeckého kraje.

7.4.4 zdravotnictví a sociální péče

Po transformaci zdravotnictví pracuje dnes naprostá většina lékařů v nestátních zařízeních. V průměru připadá na jednoho praktického lékaře pro dospělé 1735 registrovaných pacientů, přičemž každý z nich vyšetří či ošetří denně 49 osob. Z pánevních SO ORP vykazuje příznivější poměr Bílina (minimum 1566 pacientů na praktického lékaře), Litvínov a Most, nejvyšší poměr přináleží Chomu-
tovu (1990). Intenzita lékařské péče je vyjádřena počtem ošetření/vyšetření praktického lékaře za den. Nejvíce vytižení jsou lékaři pro dospělé v Chomutově a Kadani (55x), pro děti a dorost, jakož i stomatologově v Ústí n. L. (42 resp. 18x), ženští lékaři pak v Litvínově a Mostě (42 resp. 41x).

V sociální péči se v rozmezí let 2000 až 2004 snížily počty zařízení i počet lůžek v ústavech sociální péče a dětských domovů. Naopak přibýlo domů s pečovatelskou službou. Z územního pohledu chybí např. domov důchodců na Bílinsku; naproti tomu na Ústecku jich je pět a na Kadaňsku čtyři. Místa v DD se významněji změnila pouze v SO ORP Most (snížení zhruba na 2/3), byty v DPS zaznamenaly jen nepatrné změny.

V sociální péči je nejvíce domů důchodců v Ústí n. L., počet lůžek je však srovnatelný s Teplicemi (kolem 630). Též je zvýrazněna kapacita domů s pečovatelskou službou v pánvi (1110 bytů) připadá na Teplice, nedostatečná kapacita je zejména v Chomutově a Litvínově (9 resp. 24 bytů).

7.5 Osídlení, města a venkov

7.5.1 sídelní a administrativní struktura

Oblast Severočeské hnědouhelné pánve (šířejí vymezená včetně okrajových částí) zaujímá téměř 2300 km², což je přes 40 % rozlohy Ústeckého kraje. I po administrativní reformě jsou větši celky typické pro západní část ULK, kde se nacházejí správní obvody obcí s rozšířenou působností Chomutov a Kadaň.

Sídelní struktura území je podmíněna historickým vývojem, reliéfem krajin, ekonomickým zaměřením mj. ve vazbě na nerostné suroviny. Připomíneme ale spoň výměnu obyvatelstva v souvislosti s 2. světovou válkou, rozmanitost povrchu (Krušné hory, pánev, České středoohoří) či roli těžby od středověku po současnost.

V řešeném území je zhruba třetina všech obcí kraje. Prvenství v počtu samosprávných jednotek základního stupně (celkem 127) patří opět Chomutovu, na poslední přiče je Bílina (25 resp. 8 obcí). Obcí s městským statutem je 20, přičemž více jak třetinu jich najdeme v SO ORP Teplice.

Odišné podmínky (i historický vývoj) přispěly k poměrně značným rozdílům v hustotě zalidnění. Tak se vedle sebe vyskytují správní obvody se řadově 300 obyvateli (Most, Teplice, Ústí n. L.) a pod 100 obyvateli na km² (Kadaň). Diference lze přitom sledovat i v rámci měst či ostatních obcí.

Podle počtu obyvatel ve správních obvodech Severočeské hnědouhelné pánve (Ústeckého kraje) dominuje se 119 tisící (2005) Ústí n. L., následují další obvody s bývalými okresními městy (v pořadí Teplice, Chomutov, Most). Zbývající
SO ORP jsou v rámci ULK podprůměrné, nejmenší vůbec je Bílina (resp. Podbořany) přesahující jen 20 tisíc. Ačkoliv lze hovořit o poměrně značné diferenciaci, v porovnání s ostatními kraji se jedná o druhou nejnížší.

V obvodech s bývalými okresními městy žije více jak 80 % lidí ve městech. Dosahují tak, společně s Rumburkem, nejvyšší míry urbanizace. Je logické, že SO ORP pánevní oblasti na druhé straně mají velice nízký podíl obyvatel žijících v obcích do 1000 obyvatel. Pohybuje se (s výjimkou Bíliny) mezi 5-10 %, zatímco v Roudnici n. L. přesahuje 40 %.

Podle velikostních kategorií platí známá pravidelnost, totiž ve velkém počtu malých obcí žije poměrně málo obyvatel. Zpravidla 2/3 a vyšší podíl z celkové populace obvu s rozšířenou působností přínáleží obcím/městům s 10 a více tisíci obyvateli (minimum Teplice 60,6; maximum Most 88,5; SHP 76,6; ULK 64,2 %). Za poruš.reduzné lze označit, že ve všech SO ORP (s výjimkou Teplic) chybí obce s 5-10 tisíci obyvateli. Naznačené situace odpovídají údaje charakterizující průměrnou velikost obce: zatímco v kraji je to 2325 osob a 15,1 km², v pánevní jsou obce větší – maximum populací pro Ústí n. L. a Most (přes 5000), územní za Kadaň a Litvínov (přes 20).

Sídelní struktura území je podmíněna historickým vývojem, reliéfem krajin, ekonomickým zaměřením mj. ve vazbě na nerostné suroviny. Připomeňme ale, že výměnu obyvatelstva v souvislosti s 2. světovou válkou, rozmanitost povrchu (Krušné hory, pánevní oblast, České středohoří) či roli těžby od středověku po současnost.

Vedle sledování hustoty zalidnění můžeme rovněž hodnotit hustotu obcí na km², tedy jakýsi stupeň či míru integrace obcí. Zatímco ve venkovských/zemědělských oblastech se zachoval jejich poměrně vysoký počet a napak malá populace velikost, pánevní oblast se vyznačuje nižším počtem relativně velkých obcí. Kromě SO ORP Teplice jsou všechny sledované jednotky pod krajským průměrem (6,6 obcí/100 km²); vůbec nejméně jich je v Kadaní resp. Podbořanech (4,4/3,3).

Z porovnání průměrné velikosti obce podle počtu obyvatel a rozlohy vyplývá, že SO ORP pánevní oblasti mají – oproti krajskému průměru – všechny nadprůměrnou populace velikost a s výjimkou Teplice také nadprůměrnou plochu.

V obvodech s bývalými okresními městy žije více jak 80 % lidí ve městech. Dosahují tak, společně s Rumburkem, nejvyšší míry urbanizace. Je logické, že SO ORP pánevní oblasti na druhé straně mají velice nízký podíl obyvatel žijících v obcích do 1000 obyvatel. Pohybuje se (s výjimkou Bíliny) mezi 5-10 %, zatímco v Roudnici n. L. přesahuje 40 %.
7.5.2 městské osídlení

Z celkového počtu 127 obcí je 20 měst. V nich a v dalších obcích městského typu s pověřeným obecním úřadem žije téměř 420 tisíc obyvatel, tj. 86 % všech obyvatel bilancovaných k 1. 1. 2007. Celková rozloha městského osídlení je 654 km², tj. 29 % z řešeného území. Hustota městského osídlení je dnes 641 obyvatel/km².

Bezkonkurenčně největším městem je krajské město Ústí nad Labem s 94,5 tisíci obyvateli k 1. 1. 2007. Téměř 70 tisícovou hranici (67,9 tisíc obyvatel) dosahuje druhé největší město kraje, kterým je Most. Padesátitisícová města reprezentují Teplice (51 tisíc obyvatel) a Chomutov s aktuálním počtem 49,8 tisíc obyvatel.

Mezi větší města kraje patří i Litvínov s 27 tisíci obyvateli (okres Most) a Jirkov s 21 tisíci obyvateli (okres Chomutov). Středně velká města (10 - 20 tisíc obyvatel) zastupují další centra ORP a POU, konkrétně Kadaň a Klášterec nad Ohří v okrese Chomutov, ale také Bílina a Krupka v okrese Teplice.

Pro řešené území je charakteristická existence relativně velkého počtu malých měst (2-10 tis. obyv.), zejména na Teplicku. Jsou to (v pořadí podle velikosti): Duchcov, Dubí, Osek, Meziboří, Lom (obě okres Most, ORP Litvínov), Vejprty (Chomutov), Trmice (Ústí n. L.), Košťany, Chabařovice (Ústí n. L.), Hrob.

7.5.3 venkovský prostor

Venkovský prostor zaujímá 1622 km² a na celkové rozloze řešeného území se podílí 71 %. Ve venkovském prostoru žilo k 1. 1. 2007 celkem 69,3 tisíc obyvatel řešeného území, tj. necelých 14 % z celkového počtu 488,9 tisíc obyvatel. Celková hustota zalidnění je 44 osob/km².

Největší rozlohu venkovského prostoru má v absolutním i relativním vyjádření obvod Chomutov (439 km²). Tvoří 90,5 % z celkové rozlohy území jeho území, s hustotou 24 osob/km². Druhý největší absolutní rozsah venkovského osídlení s velmi nízkou zalidněností 23 osob/km² má ORP Kadaň (320 km²). Podíl venkovského osídlení na celkové rozloze je zde 71,2 %. Velkou rozlohu zaujímá neurbanizovaný prostor i v ORP Ústí nad Labem (287 km²) s relativně vysokou hustotou obyvatel 67 osob/km².
7.6 Územní diferenciace – správní obvody obcí s rozšířenou působností, obce s pověřeným obecním úřadem

7.6.1 administrativní členění

V Ústeckém kraji je od 1. 1. 2003 šestnáct následujících správních obvodů obcí s rozšířenou působností, z nichž 7 tvoří prostor čtyř okresů začleněných v řešeném území: Ústí nad Labem, Teplice, Bílina, Most, Chomutov, Kadaň. V rámci těchto správních obvodů je 11 obcí (měst) s pověřeným obecním úřadem. Řešené území má tuto hierarchii územních struktur správních obvodů.

Okres Ústí nad Labem

- SO ORP Ústí nad Labem, dále členěný na
 - SO POÚ Libouhec
 - SO POÚ Ústí nad Labe
 - SO POÚ Velké Březno

Okres Teplice

- SO ORP Teplice, dále členěný na
 - SO POÚ Teplice
 - SO POÚ Duchcov
 - SO POÚ Krupka
- SO ORP Bílina,

Okres Most

- SO ORP Most
- SO ORP Litvínov

Okres Chomutov

- SO ORP Chomutov, dále členěný na
 - SO POÚ Chomutov
 - SO POÚ Jirkov
- SO ORP Kadaň, dále členěný na
 - SO POÚ Kadaň
 - SO POÚ Klášterec nad Ohří
 - SO POÚ Vejprty
Přehled subregionů a správních obvodů obcí s rozšířenou působností v Ústeckém kraji

7.6.2 základní charakteristika: správní obvody obcí s rozšířenou působností, obce s pověřeným obecním úřadem

OKRES ÚSTÍ NAD LABEM

ORP Ústí nad Labem

Na území Ústecka zasahuje CHKO České středohoří a Tiské stěny, nejzápadnější část CHKO Labské pískovce. Sídelní město Ústí nad Labem je proslulé chemickým a potravinářským průmyslem. Správní obvod Ústí nad Labem je tvořen 3 částmi z hlediska územního uspořádání (subregiony) resp. pověřené obecní úřady:
Ústí nad Labem

Minulý vývoj charakterizuje tuto část obvodu Ústí nad Labem mírnými úbytky počtu obyvatel, ke kterým dochází stěhováním, přirozenou měrou je mírně získový. Migrační ztráty jsou vázané na samotné centrum, ostatní města, Chabařovice a Trmice jsou migračně získové, stejně tak jako venkovský prostor.

Specifickou rolí hrají v POÚ Ústí nad Labem Trmice, kde došlo k vysokým nárůstům migrací (přesun rémského etnika). Z ostatních charakteristik obyvatel města Trmice (mladá populace, abnormálně vysoká 28% nezaměstnanost, výrazně snížený kvalifikační potenciál).

Migrační ztráty jsou spojeny s nízkým tempem nové bytové výstavby v devadesátých letech (v období 1991-2001 bylo postaveno pouze 2008 bytů, které zvýšily celkové kapacity pro bydlení o 4,4 %). Pozitivním jevem je skutečnost, že téměř polovina nových bytů vznikla v nových domech, ježměna v samotném Ústí a ve venkovském prostoru.

Sociálně ekonomické charakteristiky obyvatel patří v rámci kraje k nejlépe hodnoceným a dokládají i přes migrační ztráty přitažlivost území pro vzdělanější obyvatelstvo s vyšší schopností uplatnění na trhu práce a s velmi vysokou, v rámci kraje nejvyšší zaměstnaností v třetím sektoru.

Libouchec

je část položená v severním segmentu ORP Ústí nad Labem, jedná se o odtržený venkovský prostor s celkovým počtem pouze 4,7 tisíc obyvatel. Samotný Libouchec nemá statut města a je nejslabší dvoutisícevým subregionálním centrem. Rolí pracovního a obslužného centra plní Libouchec již částečně. Nejvyšší podíl (69 %) pracovních míst je vytvořeno ve službách. Z toho vyplývá závislost obyvatel na širším prostoru, jak ukazuje záporné saldo pohybu za prací i žáků do škol. Obvod však vykazuje růstovou dynamiku z hlediska početných stavů. Jeho věková skladba je příznivá.

Velké Březno

Spádový obvod Velkého Března leží již mimo pánevní oblast, tvoří jej obce v jihovýchodním segmentu ORP Ústí nad Labem, v meziprostoru mezi Ústím n. L. a Děčínem, které profituje z blízkosti velkého nadregionálního a regionálního centra. Reálným důsledkem této výhody jsou relativně vysoké přírůstky migrací v posledních letech. Rostou zde atraktivita i pro bydlení středních sociálních skupin, která se projevuje přírůstkem bytů v rodinných domech. Výhledově lze předpokládat setrvalou migrační přitažlivost, která nahradí úbytky přirozenou měrou. K těm bude zákonně docházet vzhledem k velice nízkým předpokladům vyplývajícím z věkové skladby.
OKRES TEPLICE

ORP Teplice

Jeho rozloha činí více než 345 km², což je 6,5 % rozlohy Ústeckého kraje. Z celkového počtu 26 obcí, soustředěných v tomto správním obvodu, je 7 měst. Je druhým nejhustěji zalidněným obvodem v Ústeckém kraji, hustota činí 308 obyvatel/km². Necelá polovina obyvatel žije v sídelním městě.

Na území správního obvodu Teplice se nacházejí dva hraniční přechody, Cínovec-Zinnwald a Moldava-Neurehefeld.

Významnou firmou je např. Glaverbel Czech (dnes AGC) - největší výrobce plochého skla ve střední a východní Evropě nebo Český porcelán a. s. Dubí specializující se na výrobu porcelánu s oblíbeným cibulovým vzorem.

Nedaleko Krupky vede nejstarší sedačková lanová dráha na Komáří vížku, jejíž okolí je turistickým rájem i vyhledávaným lyžařským areálem.

Správní obvod Teplice je tvořen POU Teplice, POU Krupka a POU Duchcov, které vykazují z řady hledisek určité odlišnosti.

Teplice

má specifické postavení, jedná se obvod se silným regionálním centrem a významnou orientaci ekonomické infrastruktury na průmysl a třetí sektor. Teplice zaujímají v rámci kategorie i specifické postavení i z hlediska sociálně ekonomických charakteristik obyvatel. Je zde druhé největší soustředění obyvatel s vyšším vzděláním (po POU Ústí nad Labem), nezaměstnanost se pohybuje na průměrných hodnotách kraje, výrazně dominantní oblastí zaměstnanosti je sektor služeb. Migrační zisky byly dosahovány především vývojem ve venkovském prostoru a v Dubí, samotné Teplice jsou migračně ztrátové, díky nižší dynamice vývoje bytového fondu.

Duchcov

tvořící zázemí Teplic. Obvod charakterizuje relativně rovnovážný vývoj centra i jeho zázemí a to díky existenci dalších městských celků jako je Hrob, Osek, Košťany. Příznivý vývoj přitom doprovází velmi vysoká nezaměstnanost, dána faktickými deficity pracovních míst, ale i velmi nízkým kvalifikačním potenciálem obyvatel ve spojení s nízkou podnikatelskou aktivitou.
V sídelní struktuře je i přes rizikový vývoj těžby přece jen uchována historická paměť Duchcova, což může vytvářet předpoklady pro další participaci na efekttech při rozvoji Ústecko-teplické aglomerace, a kromě toho přírodní rámcové severní části obvodu může zajistit stabilní vývoj prostoru i za situace, kdy nelze očekávat impulsy dané ještě v 90. letech hromadou výstavbou. Příroda, uprostřed které Duchcov leží, volně a nenásilně navazuje na městskou zeleň, samotné město je vybavené rekreačními aktivitami, dobré jsou zejména možnosti koupání a rybaření.

Krupka

ORP Bílina

Správní obvod obce s rozšířenou působností Bílina je druhým nejmenším správním obvodem Ústeckého kraje. Rozlohou 123,5 km² zaujímá 2,3 % z celkové rozlohy kraje. Většina obyvatel (77 %) žije v sídle správního obvodu a hustota osídlení převyšuje průměr kraje.

Bílinsko leží pod Krušnými horami na okraji Mostecké pánve. Celá západní část katastru obce Bílina má charakter území rekultivovaného po povrchovém způsobu těžby uhlí. Jih správního obvodu patří již k Českému středohoří, které začíná vrchem Bořeň, jehož výška je 539 m n. m. Jedná se o mohutný znělečový masiv, jeho území bylo vyhlášeno národní přírodní rezervací ochraňující úkazy mrazového zvětrávání a vzácné rostlinné a živočišné druhy. Nejvyšší horou správního obvodu jsou Hradištěany (752 m n. m.) v katastru obce Hrobčice. Správní obvod má výrazně průmyslový charakter, velký význam zde má těžba uhlí a energetika.

Vývoj počtu obyvatel v posledních letech řadí tuto část správního obvodu mezi území viceméně stabilizovaná, s tím, že celkové ubytky obyvatel v samotné Bílině jsou kompenzovány migračními přírůstky ve venkovském prostoru.

Relativní stabilizaci prostoru zajišťovala výstavba nových bytů jak v samotném centru, kde bylo v letech 1991-2001 postaveno 230 nových bytů (tj. 3,5 % z bytů celkem), tak především výstavba 148 nových bytů ve venkovském prostoru (8 % z bytů celkem).

ORP Bílina je na základě zjištěných sociálně ekonomických charakteristik definována jako část s převahou obyvatelstva s nižší kvalifikací. Převažuje zaměstnanost v průmyslu a stavebnictví. Míra nezaměstnanosti v POÚ a to zejména ve venkovském prostoru převyšuje celokrajský průměr.

148
Město Bílina má lázeňskou tradici, již v 16. století byla bílinská kyselka využívána k léčebným účelům. V současné době lázně neprosperují, ale chystá se jejich obnova.

OKRES MOST

ORP Most

Správní obvod obce s rozšířenou působností Most je třetím nejmenším obvodem podle rozlohy, podle počtu obyvatel je však pátý největší v Ústeckém kraji. Hustota zalidnění správního obvodu více než dvakrát převyšuje hustotu osídlení v kraji. Centrem osídlení je město Most, ve kterém žije většina obyvatel (88 %) správního obvodu.

Území správního obvodu patří k průmyslové oblasti s povrchovou těžbou uhlí a chemickým průmyslem. Na rekultivovaných územích po těžbě uhlí se rozvíjí pěstování vinné révy.

Jihovýchodní část náleží do CHKO České středohoří, kam patří i národní přírodní památka Jánský vrch u obce Korozluky. Nejvyšším vrchem této lokality je Zlatník (522 m n. m.).

ORP Litvínov

V Krušných horách se rozprostírá správní obvod obce s rozšířenou působností Litvínov. Svoou rozlohou 236 km², patří k menším obvodům Ústeckého kraje, z něhož zaujímá 4,4 %. Hustota zalidnění je 169 obyvatel/km² a více než polovina obyvatel žije v sídle správního obvodu. Dalšími centry osídlení jsou města Meziboří a Lom.

Krušné hory zabírají převážnou část tohoto správního obvodu, pouze v jižní části se rozkládá Mostecká kotlina. Hradbu Krušných hor umožňují překonat hra-

Správní obvod Litvínov má převážně průmyslový charakter, na jeho území zasadují hnědouhelné doly (nejen povrchové, ale i hlubinné), tradici zde má chemický a další průmysl.

Demografický vývoj řadí obvod mezi zatrátové. Nepříznivý vývoj se týká především samotného Litvínova a druhého největšího města Meziboří, město Lom a ostatní venkovský prostor zaznamenaly naopak celkový růst, především migračními zisky.

Ke zvýšení počtu obyvatel docházelo především realizovanou výstavbou nových bytů. V městě Lomu bylo v desetiletí 1991-2001 postaveno 228 nových bytů (16 % z bytového fondu, z toho 57 % bytů v rodinných domech), ve venkovském zázemí to bylo 138 nových bytů (9 % z celkového bytového fondu, 86 % v rodinných domech). Jak v Litvínově, tak jeziměna Meziboří se projevila ve výstavbě nových bytů stagnace.

Obvod Litvínov patří z mnoha hledisek k nejproblematickéjším ze všech OPR Ústeckého kraje. Celková vzdělanochnost úroven je proti krajskému průměru významně snížená, a to jak ve městech, tak i v jeho venkovském zázemí.

Centrum obvodu Litvínov je především průmyslovým městem s dnes problématickým vývojem v textilním, strojírenském, chemickém a petrochemickém průmyslu. Zaměstnanost obyvatel v průmyslu stále ještě dominuje, v třetím sektoru je zaměstnanost pod krajským průměrem. Nezaměstnanost je velmi vysoká a je svázána s ekonomickými procesy restrukturalizace chemického průmyslu a silnou koncentrací sociálně problémového obyvatelstva. Litvínov má velmi špatné mediální image jako město s vysokým výskytem násilných trestných činů a město s působením mafií.

Obvod má dobré přírodní zázemí. Nejvyšší vrch Loučná dosahuje výšky 956 m. n. m. Mezi známé přírodní rezervace patří Černý rybník s rašeliníštěm s typickou faunou a flórou.

Další rezervací je Jezera, ležící v lesích Martina Lobkowitze na rozhraní Mostecka a Chomutovska. Její součástí je technická památka - lobkovická přehrada z počátku 20. století na Lesním potoce. Plánuje se zřízení přírodního parku na ochranu krajin v oblasti Šumného dolu.

Nedaleko odtud na úpatí Krušných hor leží renesanční zámek Jezereří. Ve městě Meziboří se nalézají lázně a sousední obec Klíny je střediskem zimních sportů. Vysoko v horách při státní hranici leží na Flájském potoce jedna z největších zásobáren pitné vody pro Mostecko a Teplicko, Flájská přehrada.

OKRES CHOMUTOV

ORP Chomutov

Správní obvod obce s rozšířenou působností Chomutov svou rozlohou 486 km² zaujímá 9,1 % rozlohy Ústeckého kraje, je tak druhým největším správním obvodem v kraji. Převážná většina obyvatel žije ve městech Chomutově a Jírkově.

Podhůří je poznamenáno povrchovou těžbou uhlí. Severozápad území je tvořen Krušnými horami, kde nejvyšším vrcholem správního obvodu je Mezihořský vrch s výškou 916 metrů nad mořem. Krušné hory jsou zalesněny převážně smrkovou monokulturou, nachází se zde množství chráněných území, například národní přírodní rezervace Novodomské rašeliniště nedaleko Kalku, národní rezervace Jezera u Vysoké Pece nebo přírodní rezervace Na loučkách. Nejníže položeným místem správního obvodu je údolí řeky Ohře (230 m n. m.), která tvoří jižní hranici správního obvodu.

ORP Kadaň

Správní obvod obce s rozšířenou působností Kadaň je pátým největším správním obvodem, má rozlohu 449 km², což představuje 8,4 % rozlohy Ústeckého kraje. Obyvatelstvo žije v menších obcích, celkem obvod zahrnuje 19 obcí, z toho jsou tři města. Centrem osídlení je Kadaň a Klášterec nad Ohří, obě města do dvaceti tisíc obyvatel.

Tento správní obvod leží na území podkrušnohorské hnědouhelné pánve, důležitou roli zde hraje energetika, strojírenství a těžba uhlí.

Pohoří Krušných hor stoupá do své maximální výše v místech, kde se stýkají tři hranice - našeho kraje, Karlovarského a státní hranice s Německem. Nejvyšší vrchol Krušných hor, Klínovec, leží v těsné blízkosti hranice v sousedním kraji Karlovarském, nedaleko něj se nachází nejvyšší vrchol kadaňského správního obvodu Macecha (1 113 m n. m.).

Vysoko v horách se nalézá i třetí město správního obvodu, Vejprty. Nedaleko nich u obce Kryštofovy Hamry se nachází vodní nádrž Přísečnice, která je zdrojem pitné vody.

Kadaň

Vývoj počtu obyvatel v této části správního obvodu byl stabilní, migrační ztráty byly vyrovnány přírůstky přirozenou měnou. Takto proběhl vývoj v obci Kadaň, ve venkovském prostoru, kde žije 19 % z obyvatelstva spádového obvodu byl vývoj opačný - došlo zde ke ztrátám přirozenou měnou a k migračním ziskům.

Kadaňsko se profiluje jako oblast s mírně zvýšenou ekonomickou aktivitou obyvatelstva oproti průměru kraje, se stále vysokou orientací na průmyslové aktivity (42,5 % včetně stavební výroby) a sníženou zaměstnaností ve službách. Takto se profiluje jak obyvatelstvo města tak venkovského prostoru. Ve venkovském prostoru hraje přítom stále ještě významnou roli zaměstnanost v priméru (13,4 %).

Negativem tohoto prostoru je spíše podprůměrný kvalifikační potenciál obyvatelstva dlouhodobě ovlivňovaným potřebou nízko kvalifikované síly v palivo energetickém komplexu. Doprovodným jevem je vysoká nezaměstnanost.

Klášterec nad Ohří

Migrační ztráty této části správního obvodu jsou vyrovnávány přírůstky přirozenou měnou již jen částečně. Vzhledem k tomu, že má velmi slabé venkovské zázemí, kde bydlí pouze 1,4 tis. obyvatel, vztahují se hodnoty zejména k obci.
Klášterci nad Ohří. Nízká stabilita obyvatel byla mimo jiné ovlivněna i nízkou intenzitou bytové výstavby v minulých letech.

POÚ Klášterec se proti průměru kraje vyznačuje celkově zvýšenou ekonomickou aktivitou, díky mladému obyvatelstvu, v ekonomické orientaci místního obyvatelstva dominuje jednoznačně průmysl, zaměstnanost ve službách je velmi nízká, ve venkovském prostoru má pro celkovou zaměstnanost stále ještě určitý význam zemědělská výroba.

Kvalifikační potenciál je snížený, charakterizuje jej vysoká koncentrace obyvatel se základním vzděláním nebo bez vzdělání. Tomu odpovídá i vysoké zastoupení sociálně slabého obyvatelstva a rostoucí nezaměstnanost.

Vejprty

- Pánevni oblast

Severočeská hnědoúhelná pánev tvoří pouze části obvodů sledovaných v analýze. Severočeská hnědoúhelná pánev (dále jen SHP) je nejrozsáhlejší souvislou průmyslovou oblastí České kotliny, sehrávající hlavní roli v těžbě hnědého uhlí a výrobě elektrické energie a tepla. Další výroby, charakteristické pro tuto oblast jsou chemická výroba a výroba skla. Tato odvětví vytvářejí v oblasti dosud nejvíce pracovních míst. Některá města oblasti (Teplice, Bílina, Duchcov) byla v minulosti proslulými lázněmi. Současné strategické koncepce měst předpokládá i další rozvoj lázeňství, především v Teplicích, jejichž lázeňská funkce má nadregionální význam.

Na území SHP je celkem pouze 61 obcí, z toho 14 měst. Rozlohou 110 980 ha zaujímá Severočeská hnědoúhelná pánev 20,8 % území Ústeckého kraje (2. místem po oblasti Polabí-Poohří). Průmyslový charakter oblasti se projevuje v nejsilnější koncentraci obyvatel do městských celků a ve vysokém podílu zde žijícího obyvatelstva na kraji celkem.

Žije zde cca 430 tis. obyvatel a zároveň se jedná o nejvíce zalidněnou oblast s průměrnými hustotami cca 380 obyvatel/km². Regresivní vývoj charakteristický pro devadesátá léta se v posledních několika letech zastavil a od r. 2001 jsou zde evidovány mírné přírůstky obyvatel.

Vliv existence velkých měst a jejich vybavenost se podílejí na skutečnosti, že obyvatelé SHP ve věku nad 15 let mají oproti průměru kraje vyšší podíl (31,5
obyvatel se středoškolským a vysokoškolským vzděláním než kraj jako celek (30,5 %).

Problémy útlumu těžby uhlí, změny v palivo-energetickém komplexu, útlumy výrob v hutním průmyslu, spojené se snižováním zaměstnanosti se dotýkají velkého počtu obyvatel. Nezaměstnanost v této oblasti je stále nejvyšší z celého kraje.

Východní prostor bude příznivě ovlivňován rozvojem ústecko-teplického prostoru, kde působí dostatečně množství ekonomických i mimoekonomických impulů, které budou působit proimigračně.

7.6.3 Postavení správních obvodů obcí s rozšířenou působností v letech 2001-2005 a jeho změna v čase

Ze souhrnného hodnocení demografického prostředí a sídelní struktury je zřejmé, že ze SO ORP pánve (případně kraje) jsou na tom nejlépe Ústí n. L. a Teplice (dále Roudnice n. L. a Litoměřice). Jen u některých ukazatelů (okruhů) vykazují obdobné příznivé hodnoty: zjednodušeně se jedná o vzdělanostní strukturu, participaci na vyšším vzdělávání a strukturu osídlení. Na prvním místu Ústí n. L. se podílí příznivá věková struktura, vyšší úhrnná plodnost či nadprůměrná hustota zalidnění. Teplice se uplatňují v popředí mj. díky migrační atraktivitě a zastoupení cizinců.

Na druhém pólu, tedy s nepříznivou situací (případně vývojem) se potýkají Bílína a Kadaň (mimo SHP pak Podbořany). Zde se setkáváme jednoznačně se shodnými rysy, jako je zejména nadprůměrná úmrtnost, nižší vzdělanost, vyšší sociálně-demografická nestabilita. Ne ve všech charakteristikách se tyto regiony pohybují mezi špatnými, např. celkové hodnocení Bíliny je „vylepšováno“ první pozicí v kraji u úhrnné plodnosti a indexu stárnutí.

Z hlediska vývojového došlo k největším změnám v pořadí SO ORP u úhrnné plodnosti. Ta při porovnání mezi obdobími 1996-2000 a 2001-05 vzrostla, v každém správním obvodu ale s jinou intenzitou (např. Ústí n. L. se posunulo v ULK o 9 míst). Obdobný „osud“ se týká migrační atraktivity pro mladou generaci, když např. Most se posunul o sedm příček nahoru.

Hodnocení sociálního prostředí potvrzuje nepříznivou situaci pánevní oblasti, neboť v popředí v pozitivním smyslu slova se neprosazuje žádný ze spádových obvodů ORP.

Mezi obvody s největšími sociálními problémy patří Most, Litvínov (a Rumburk). Tyto obvody vykazují vysokou míru nezaměstnanosti, byť částečně kompenzovanou relativně příznivým podílem nezaměstnaných nad 50 let. Společným znakem je rovněž nízká intenzita bytové výstavby. Dále se v pánevní
oblasti setkáváme s poměrně vysokou kriminalitou, vyšším podílem nezaměstnaných do 25 let nebo vysokým počtem pacientů na jednoho lékaře či zubaře.

Ve vývojovém srovnání se např. zhoršilo postavení mladých lidí do 25 let v Chomutově, obdobný vývoj byl zaznamenán u bytové potřeby v ústí n. L., Chomutově, Kadani a Litvínově. Zlepšení evidujeme pouze u volební účasti v Chomutově, kde díky nárůstu o více než 11 % bodů došlo k posunu o osm příček.

Mezi ORP ekonomicky nejvýkonnější se z pánevních spádových obvodů řadí pouze Ústí n. L., když první skupinu dále tvoří Litoměřice a Děčín. Příznačná je pro ně vysoká intenzita podnikatelské aktivity, nízká specializace, nadprůměrné zastoupení terciéru, vysoké zastoupení zaměstnaných ve skupině 55-64 letých a vyšší daňové příjmy na obyvatele. Zcela světové postavení u produktivity průmyslu zaujímá Litvínov, který má celkovou hodnotu tržeb na zaměstnance nejvyšší nejen v kraji, ale i na celostátní úrovni.

Mezi slabší patří naopak Bílina, která se navíc značně odlišuje od ostatních SO ORP (Podbořany, Varnsdorf, Rumburk) této skupiny. Postavení Bíliny lze vysvětlit zejména nízkou podnikatelskou aktivitou, nízkým zastoupením podniků se zahraničním kapitálem, nevyhovující odvětvovou strukturou, nedostatečnými finančními zdroji pro rozvoj a okrajovým významem cestovního ruchu. V tomto bloku je možné sledovat vývoj jen u čtyřech ukazatelů. U míry zaměstnanosti osob ve věku 55-64 let se zlepšilo postavení obvodů Most a Litvínov, Bílina se posunula vpředu u komplexně funkční velikosti. Naopak ztráta nebo posun v negativním smyslu zaznamenáváme u indexu lokalizace ve stavebnictví pro Chomutov, Bílinu a Ústí n. L.

Poslední tematický okruh (infrastruktura, poloha, dostupnost, životní prostředí) se od předchozích okruhů odlišuje pestrými zvolenými ukazatelů, působících do značné míry i protisměrně. Svým způsobem doplňují předchozí okruhy a nelze je považovat za homogenní.

Nejlepší hodnocení dosahuje Ústí n. L., následované (Varnsdorfem) a Litvínovem. SO krajského města těží z dobré dostupnosti veřejnou dopravou, polohy, jakož i vysokého podílu obcí se svázané pomocně plánovací dokumentací. Pozice Litvínova je dána rovněž dobrou dostupností sídla obvodu, vysokým významem veřejné dopravy a nadprůměrným podílem obyvatel napojených na infrastrukturní systémy (plyn, kanalizace, ČOV).

Ani jeden ze spádových obvodů obcí s rozšířenou působností v pánevní oblasti se nepočítá ke slabším resp. problémovým regionům.
7.6.4 Shrnutí postavení správních obvodů obcí s rozšířenou působností v rámci kraje a Česka

V tomto případě již zcela abstrahujeme od konkrétních hodnot jednotlivých ukazatelů. Naopak porovnáváme dosažená pořadí (1-16 v Ústeckém kraji resp. 1-7 v pánevní oblasti), která každý SO obsadil ve všech tematických oblastech (viz výše). Zvolená metoda umožňuje nejen posoudit celkové postavení, ale zároveň vyrovnatost či rozkolísanost podle témat.

V celorepublikovém srovnání zjišťujeme, že Ústecký kraj patří mezi relativně homogenní, sledujeme-li rozmanitost na základě odlišnosti či podobnosti jednotlivých správních obvodů obcí s rozšířenou působností. Tato situace je zřejmě podmíněna polycentrickou strukturou kraje i páneve a odraží se v blízkých hodnotách nezaměstnanosti, některých demografických ukazatelů či indexu progresivity ekonomické struktury.

Graf č. 25 - Přehled pořadí správních obvodů obcí s rozšířenou působností v jednotlivých tematických okruzích (ČSÚ)
8 Disparity v modelové oblasti

8.1 Historický exkurz

Sledovaná modelová oblast, vymezená územím okresů Ústí n. L., Teplice, Most a Chomutov, patřila až do poloviny 20. století k regionům, v němž byla relativně příznivá symbióza rozvinutého průmyslu a hustého osídlení na jedné straně a přírodních podmínek na straně druhé. Atraktivita a specifika přírodních podmínek spočívala a spočívá především ve velmi členitém reliéfu krajin, v příznivých vodohospodářských podmínkách, v bohatství nerostných surovin a lázeňských pramenů. To vše skýtalo i podmínky pro rozvoj turistiky, rekrece a cestovního ruchu. Dalším společným rysem tohoto regionu je geografická položka při česko-německé hranici (Sasko) a hustá síť dopravních spojů a technické infrastruktury.

Vývojová kontinuita po 2. světové válce byla nejvíce narušena v oblasti demografické, kdy v roce 1950 (tj. v podstatě po ukončení první zásadní vlny poválečného obyvatelstva v důsledku odsunu Němců a dosídlování pohraničí obyvatelstvem) dosáhl počet obyvatel pouhých dvou třetin stavu roku 1930. To výrazně ovlivnilo sociální, vzdělanostní, národnostní a územní skladbu obyvatel, která byla v následujícím období populacem a imigračním vývojem dále reprodukována a je dodnes patrná.

K dalším výrazným změnám docházelo v oblasti ekonomické, zejména v struktuře průmyslu. Vedle tradičních odvětví sklářského, textilního, keramického a potravinářského průmyslu byl hlavní tlak zaměřen na prioritní rozvoj rovněž tradičního odvětví, jakým zde byla od poloviny 19. století průmyslová těžba hnědého uhlí a jeho energetické využití, především při výrobě elektrin a generátorového plynu.

8.2 Výčet a analýza sociálně-demografických disparit a specifik

V současním správním rozdělení Ústeckého kraje vymezujeme naši zájmovou modelovou oblast územím čtyř okresů: Chomutova, Mostu, Teplíc a Ústí nad Labem, které je totožné s územím sedmi správních obvodů: Chomutova, Kadani, Mostu, Litvínova, Teplíc, Bíliny a Ústí nad Labem. Zde, na území 2276 km², nyní bydlí zhruba 500 tisíc obyvatel, což je 5/6 z předválečného maxima (zjištěnouho při sčítání r. 1930).

Pramen: ČSÚ

8.2.1 Obyvatelstvo, jeho migrace a složení, urbanizace

Ve výčtu specifik a disparit, které jako „komparativní nevýhody“ ovlivní budoucí ekonomický vývoj pojednávaného regionu, je dle našeho názoru na prvním místě nepříznivá vzdělanostní a kvalifikační struktura obyvatel, stejně jako nižší stupeň stability a identity obyvatel s tímto regionem, což obojí souvisí se zásadní poválečnou obměnou populace. Příchod osídlení sem směřovali většinou s cílem zvýšit si sociální status. O rozsahu migrace svědčí například údaj, kdy v období 1960-1990 se přistěhovalo jen do okresů Chomutov, Most, Teplíc a Ústí nad Labem 250 000 osob a řádově stejný počet odešel. Odcházely zejména osoby s vysokoškolským vzděláním, ve středním věku, tedy s vyššími možnostmi uplatnění. Mezi motivy odchodu ze severních Čech převládala touha po lepším profesním uplatnění, nespokojenost s kvalitou životního prostředí, mezilidských vztahů a další.

S ekonomickým a demografickým vývojem od konce 19. století souvisí vysoký stupeň urbanizace, dosahující v některých okresech (např. Most, Teplíc, Ústí n. L.) stavu, kdy více než 80 % obyvatel žije ve městech nad 10 tisíc obyvatel. To dále prohlušuje anonymitu, nižší sounáležitost obyvatel a výskyt nežádoucích společenských jevů.
Dalším charakteristickým znakem je vyšší podíl národnostních a etnických menšin jako důsledek poválečného dosídlování a následných migračních vln, který dosahuje v některých okresech odhadem 10 až 15 % z celkového počtu obyvatel. Zvlášť problémovou skupinou jsou obyvatelé rodné národnosti, jejichž počet zde dosahuje zhruba poloviny rozdělení a následných migračních vln, který dosahuje v některých okresech odhadem 10 až 15 % z celkového počtu obyvatel. Zvlášť problémovou skupinou jsou obyvatelé rodné národnosti, jejichž počet zde dosahuje zhruba trojnásobku průměru za ČR. Lze doložit zvýšený výskyt sociálně negativních až sociálně patologických jevů, jako je rozvodovost a s tím související počet neúplných a rozpadávajících se rodin, počet asociačních skupin (delikventi, potrestaní, alkoholiči, narkomani), trestná činnost, kriminalita, což bohužel dále zhoršuje výsledný obraz tohoto regionu. Sociálně patogenní prostředí severočeského pohraničí produkuje stabilně vysoký podíl trestně činnosti.

Míra kriminality vykazuje v rámci ČR zpravidla toto pořízení: Ostrava, Praha, Most, Sokolov, Cheb, Karlovy Vary, Ústí nad Labem. Na určitých typech kriminality se výrazně podílejí Romové. Mimořádný podíl Romů (vzhledem k jejich početnímu podílu na celkovém počtu populace) je v opakované trestné činnosti (recidivistů).

Ve výskytu drogových závislostí někdy předstihují severočeské okresy i velkoměstské aglomerace (Praha) – první tři místa často náleží okresům Most, Ústí nad Labem a Chomutov. Lze se domnívat, že demografičké a environmentální disparity jsou přičinou a vyvolávají určité devastaci sociálního mikroklimatu a mezilidských vztahů. Nadprůměrný je podíl dětí a mládeže vyrůstající v sociálně narušeném prostředí.

Více než v jiných oblastech zde dochází k ohrožení funkce rodiny jako základního článku společenské sociální struktury. Integrita rodiny je ohrožena novou kvalitou životního stylu, kterou přináší hedonismus konzumního charakteru tržní ekonomiky a souběžně rozvolnění morálních hodnot. Důsledkem je vysoká míra rozvodovosti (srovnatelná s Prahou, kdy se rozvádí zhruba polovina uzavřených svazků). Stabilizace rodinného života závisí na vytvoření nových struktur občanské společnosti a na celkovém zklidnění a humanizaci života společnosti.

Určitá část Romů se ve společnosti asimilovala. Problém tvoří zejména Romové přicházející po roce 1990 z území bývalého Sovětského svazu, Rumunska a Maďarska. Část z nich nemá statut azylantů a byla vrácena zpět do země původu. Nemalá část z nich ale zůstala v ČR a usadila se zejména na severu Čech.
Důvodem byla relativně vyšší možnost získat bydlení a nekvalifikovanou práci. Obě možnosti však s postupující transformací ekonomiky a společnosti prakticky zmizely. Lze předpokládat, že revitalizace městských center a sídlišť (např. Teplice, Duchcov, Kadaň a Ústí n. L.) pronikavě zmenší počet neobydlených bytů, kde Romové hledají přístřeší. Obdobně rychle ubývá nekvalifikovaných míst v průmyslu a tento vývoj se urychlil rovněž v těžebním průmyslu.

Ekonomický tlak bude nutit Romy k postupnému získávání kvalifikace a adaptaci nebo k odchodu. Část z nich bude přesto tvořit potenciální základnu kriminality a lze tudíž očekávat rostoucí tlak represivního aparátu, zejména městské policie. Souběžně s tím je však nutné tvořit podmínky pro integraci Romů do společenských struktur (opatření typu affirmative actions) a omezovat rasovou diskriminaci. Je třeba se rovněž vyrovnávat s trvalým pobytem rostoucích počtů emigrantů z východu a s jejich postupnou asimilací.

8.2.2 Nezaměstnanost

Počínaje červencem 2004 je v ČR uplatňována nová metodika výpočtu míry nezaměstnanosti, která harmonizovala její výpočet s metodikou frekventovanou v rámci EU. Údaje vykazované před r. 2004 lze přepočítat s vyhovující přesností tak, aby byly kompatibilní s daty dle nyní platné metodiky. V takto získané časové řadě zjišťujeme:

1/ okres našeho kraje s minimální mírou nezaměstnanosti (Litoměřice) vykazuje dlouhodobě vyšší hodnotu tohoto parametru než je průměr ČR

2/ rovněž celokrajský průměr je trvale vyšší průměru ČR
8.3 Těžba v Severočeské hnědouhelné pánvi

8.3.1 Dosavadní vývoj a současný stav

Povrchová těžba v Severočeské hnědouhelné pánvi (SHP) od svého počátku (ještě v XIX. století) až po dnešní dny zasáhla plochu cca 250 km², z čehož bylo dle posledního statistického šetření označeno jako rekultivované území 95 km². Od 60. let XX. století bylo zde zlikvidováno asi 116 vesnic a měst nebo jejich částí včetně historického města Most. Vystěhováno přitom bylo na 90 tis. lidí.

Relevantní příčinou závažného narušení přírodních složek životního prostředí v modelové oblasti a jejich sociálně ekonomických disparit a specifik bylo poválečné zaměření Československa na industrializaci a politika „levné energie“. Ta to koncepce zcela zákonitě směrovala rozvoj palivoenergetické základny do oblasti SHP. Byla založena na exploataci bohatých zásob málo kvalitního (energetického) hnědého uhlí, výhodně uloženého pod povrchem, na lokalizaci tepelných velkoelektráren bezprostředně u zdrojů, na minimalizaci dopravních nákladů a na jednostranných „úsporných“ opatření a těžbě uhlí a výrobě elektriny. Regionální důsledky této politiky jsou dostatečně známy a lze je stručně shrnout takto: přes 5000 MW kapacit tepelných elektráren, původně bez odsíření, mimořádné koncentrace emisí oxidu sířičitého, mnohonásobné překračování hygienicky přípustných norem znečištění ovzduší, devastační zásahy do krajin, sídelní struktury a infrastruktury.

Situace regionu v r. 1989 byla charakterizována zejména:
nedostatečným řešením nastalých ekologických škod (tzv. staré ekologické zátěže),

nedostatečnou dopravní obslužností velkých měst a nově vznikajících průmyslových zón jak z českého vnitrozemí, tak i ze SRN,

nízkou diverzifikací průmyslu a ekonomickou konkurenceschopností vůči ostatním regionům republiky,

nevyužitím ekonomického potenciálu horských území a zemědělského venkova, celkovou zanedbaností a vylidňováním těchto oblastí,

zanedbaností městských obvodů s panelovými domy (nutnost postupné „humanizace“ panelových sídlišť),

nižší vzdělanostní strukturou lidských zdrojů a nedostatečnou vysokoškolskou a tím i vědecko-výzkumnou základnou.

Po roce 1989 vlivem útlumu průmyslové výroby, poklesu těžby uhlí a instalace odsířování elektrárenských spalin se významně snížilo zatížení regionu škodlivinami, došlo k určitěmu zlepšení krajiného rázu a životního prostředí. Urychlovalo se předávání nepotřebných pozemků ve vlastnictví důlních společností do rekultivačního cyklu.

V r. 1991 byly vládou stanoveny územní ekologické limity pro jednotlivé doly a výsypky. Tyto limity určují hranice, které by povrchová těžba a ukládání jejího odpadu neměly překročit. Byly stanoveny třemi usneseními vlády ČR z podzimu 1991, která se týkala Chabařovic (č. 331/91), celého Podkrušnohoří (č. 444/91) a Sokolovska (č. 490/91). Ukládají příslušným úřadům (ministerstva, tehdejší okresní úřady a Český báňský úřad) respektovat tyto limity jako závazné linie a zároveň upravit již vyhlášené dobývací prostory hnědouhelných dolů tím, že se provede tzv. odpis zásob. Ten umožňuje buď vyjmout zásoby vůbec z eviden-
ce a nebo převést bilanční zásoby do kategorie tzv. zásob nebilančních. V obou případech se tak znemožní jejich těžba. Tento odpis se však uskutečnil jen u lo-
mu Chabařovice, v případě Sokolovská a Podkrušnohoří k němu fakticky nedo-
šlo. Limity respektují ochranné pilíře některých větších měst, průmyslových
areálů a dopravních koridorů, tak jak je stanovila vláda ČSSR v roce 1963, další
ochranný pilíř chrání zámeč Jezeří a přilehlé arboretum.

Environmentálně orientovaná veřejnost s časovým odstupem hodnotí vyhlášení
předmětných limitů jako jistý kompromis mezi zájmy těžebních společností a
potřebami a zájmy obcí v ochraně životního prostředí, stejně tak jako určité ne-
zbytné východisko pro hodnocení účelnosti obecních investic. Tak např. těžaři
mohou zlikvidovat vrch Farářka, který by jinak mohl tvořit přirozenou ochranu
Droužkovic na Chomutovsku před hlukem a prašností z přiblížujícího se dolu
Libouš.

V r. 2006 poskytovala Mostecká uhelná společnost (MUS) přímou pracovní pří-
ležitost průměrně 6240 zaměstnancům a Severočeské doly (SD) v témže období
3540 zaměstnancům. MUS a SD vytváří celou řadu dalších pracovních příleži-
tostí pro své dodavatelské a subdodavatelské společnosti z regionu, ale i mimo
něj. Tento sekundární vliv na zaměstnanost – pokud je nám známo – nebyl pro-
zatím kvantifikován.

V SHP se nyní těží zhruba 80 % ze současné produkce hnědého uhlí v ČR. Těž-
ba je zde realizována dvěma společnostmi: 1/ Mosteckou uhelnou, a. s. (použí-
váná zkratka: MUS) s dvěma velkodoly: „ČSA“ a „Vršany“ - 2/ Severočeskými
doly, a. s. (používaná zkratka: SD) s dvěma velkodoly: „Bílína“ a „Libouš“.
Zbylých 20 % těžby pak připadá na sokolovskou pánev v Karlovarském kraji (a.
s. Sokolovská uhelná). V Ústeckém kraji se přitom spotřebovává zhruba 60 %
v SHP vytěženého uhlí. V r. 2006 se na celkové spotřebě hnědého uhlí v ČR ve
výši 44,3 Mt podílel Ústecký kraj 24,2 Mt a Karlovarský kraj 5,9 Mt.

| Tabulka č. 36 - Těžba hnědého uhlí v ČR |
|-----------------|---------|---------|---------|---------|
| Producent | 2003 | 2004 | 2005 | 2006 |
| | tis.tun | % | tis.tun | % | tis.tun | % | tis.tun | % |
| Mostecká uhelná a.s. | 16 960 | 34 | 16 213 | 34 | 16 107 | 34 | 15 732 | 32,4 |
| Severočeské doly, a.s. | 22 739 | 46 | 21 757 | 45 | 21 776 | 45 | 22 459 | 46,3 |
| Sokolovská uhelná, a.s. | 10 083 | 20 | 10 081 | 21 | 10 307 | 21 | 10 329 | 21,3 |
| celkem | 49 782 | 100 | 48 051 | 100 | 48 190 | 100 | 48 520 | 100 |

Pramen: ČSU
8.3.2 Rekultivace krajiny po těžbě

Podle § 35 zákona č. 44/1988 Sb. o ochraně a využití nerostného bohatství (Horní zákon) je těžař v ČR povinen provádět na plochách, které byly narušeny těžbou, kompletní úpravu území a územních struktur – tj. rekultivaci. Rekultivační práce by se měly dle tohoto zákona soustředit zejména na vlastní plochu výsypek, na další lokality, které s těžbou souvisejí, tedy zbytkové jámy, těžební (skrývkové a uhelné řezy) strany bývalých lomů, poklesy po hlubinném dobývání, prostory narušené těžbou nepřímo (bývalá kolejistě, plochy různých bývalých s těžbou souvisejících budov) atd. Za podmínek dodržení stávajících těžebních limitů následné rekultivační práce cílově zasáhne (na úrovni r. 2020) nejméně 18 % plochy okresu Most, v případě okresů Teplice a Ústí n/L zhruba 7 % plochy a v případě okresu Chomutov 3 % jeho výměry. Roste podíl hydrických rekultivací: zatímco u ukončených rekultivačních prací 2,7 %, u těch, co by měly být dokončeny do r. 2020, představují 8,3 %. S jistým zjednodušením lze tvrdit, že trend hydrických kultivací pozitivně koreluje s původním biotympodkrusnohorské krajiny: Pod Krušnými horami se v pravěku rozprostíralo velké jezero, jehož plocha se však postupně (nejprve vlivem sedimentace splavenin, později lidské aktivity) rozdělila na několik menších jezer. Největší z nich bylo Komorské jezero, rozkládající se severozápadně od dnešního Mostu. To je popisováno jak v monografiích exulanta P. Stránského (Český stát, 1634), tak i u B. Balbína, S. J. (Miscellanea historica Regni Bohemiae, 1679 – 1687), z jiných pramenů je známo Břevanské jezero. Všechna jezera musela ustoupit indus-trializaci a těžbě a památkou na ně zůstalo jen německé označení Ervčenic: Seestadt (tj. město na jezeře).

Finanční zabezpečení rekultivačních prací řeší důlní společnosti v ČR v souladu s § 31 Horního zákona a jeho následných novelizací, který jim ukládá povinnost vytvářet rezervu na rekultivaci území zasažených báňskou činností a jejich závěrečnou sanaci. Roční výše této rezervy je dána podílem celkových rekultivačních nákladů a celkových zbytků vytěžitelných zásob uhlí, vynásobených roční těžbou v tunách.

hnědouhelných společností v Ústeckém a Karlovarském kraji. Z těchto prostředků jsou a budou hrazeny náklady na rekultivace předčasně utlumených dolů a také na revitalizaci a resocializaci rekultivovaných území tak, aby se tyto oblasti znovu oživily a staly zdrojem nových pracovních příležitostí.

8.3.3 Výhled těžby v SHP

V poslední (a stále oficiálně neodvolané) Státní energetické koncepci (SEK) (publikované v roce 2004) je předpokládána ve vybraném nejpravděpodobnějším tzv. „zeleném scénáři“ 11 následující těžba hnědého uhlí a výkon jaderných elektráren:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Těžba hnědého uhlí (Mt)</td>
<td>49,46</td>
<td>44,94</td>
<td>44,58</td>
<td>42,01</td>
<td>40,48</td>
<td>35,88</td>
<td>32,59</td>
</tr>
<tr>
<td>pro všechny druhy užití</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaderné elektrárny –</td>
<td>1765</td>
<td>3722</td>
<td>3722</td>
<td>3722</td>
<td>3722</td>
<td>4322</td>
<td>4922</td>
</tr>
<tr>
<td>instalovaný výkon (TW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pramen: Státní energetická koncepce, MPO, 2004

V SEK v odstavci 3.2.4.4 je k tomu deklarováno: „Racionální přehodnocení vládních usnesení o územních limitech těžby hnědého uhlí. Rozhodování o územním limitování těžby hnědého uhlí přenést v souladu s platnou legislativou na územně samostatné orgány.“ V bilancích přiložených k citované dokumentaci není uvažován vývoz elektřiny.

V uplynulých letech bylo možné zaznamenat určité tendence a trendy, které problematizovaly SEK z r. 2004:

V r. 2006 instalovaný výkon jaderných elektráren činil 3760 TW – tedy byl v souladu s předpoklady SEK. Celková hodnota instalovaného výkonu elektráren v ČR k 1. lednu 2007 byla 17 508 MW. Avšak těžba hnědého uhlí v témže roce převyšila o cca 7 % předpoklad citované koncepce.

Postupující liberalizace trhu s energiemi v EU a růst cen energetických zdrojů na tomto trhu motivuje podnikatelské subjekty jednak k vývozu energetických produktů, jednak k formulaci investičních zájmů na rekonstrukci stávajících a výstavbu nových výrobních kapacit. V roce 2006 celková tuzemská spotřeba elektřiny v ČR však ztrát v sítích byla 71,7 TWh. „Potenciální exportér/importér

elektriny z/do České republiky prostřednictvím přenosové soustavy musí nakoupit příslušnou kapacitu na přeshraničním profilu prostřednictvím aukcí pořádaných provozovatelem přenosové soustavy. V roce 2006 bylo z České republiky exportováno 19,5 TWh, naopak import dosáhl celkově výše 6,9 TWh. Energetický regulační úřad nemá data týkající se cen a srovnání cen obchodované elektriny s okolními státy k dispozici.“ (Národní zpráva 2007). Saldo zahraničního obchodu s elektrinou (12,6 TWh) odpovídalo v r. 2006 zhruba 18 % tuzemské spotřeby elektriny, podle předběžných údajů se v r. 2007 toto saldo zvýšilo na 16,2 TWh a tím dosáhlo cca ¼ tehdejší spotřeby elektriny.

Podnikatelský zájem je zřejmě v pozadí i v ČR stále silnější a proargumentovanější artikulovaného doporučení dalšího rozvoje jaderné energetiky a to zejména v kontextu úsilí o omezení (resp. nezvyšování) emisí oxidu uhličitého. V lednu 2007 nový vládní kabinet ve svém programovém prohlášení uvedl, že nebude plánovat a ani jinak podporovat výstavbu nových jaderných bloků – což je v rozporu se SEK z r. 2004. Byla ale potvrzena platnost ekologických limitů při těžbě hněděho uhlí. Nehledě na to sílí tlak těžařských společností na revizi („prolomění“) ekologických limitů těžby v SHP a úměrně tomu se zvyšoval odpor environmentálně orientované veřejnosti proti tomu. Protože následná výroba elektriny s pomocí hnědého uhlí zvyšuje emise oxidu uhličitého do ovzduší, elektrárenská ČEZ a. s. ve vývoji a projekci připravuje zachycování a deponii oxidu uhličitého do podzemí. V lednu 2008 zveřejnila Evropská komise návrh Direktivy o geologickém ukládání oxidu uhličitého. Návrh je obsažen v balíčku legislativních návrhů pod názvem „Klimatická akce a obnovitelná energie. Avšak i tato metoda, v porovnání s dalšími, není bez environmentálních rizik: „V USA takhle napumpovali asi 50 km od města Houston (Texas) asi 1 600 tun oxidu uhličitého do hloubky přes 1 500 m. Podle dosažených výsledků zůstal plyn sice na svém místě, ale jeho vliv na okolí byl značný. Plyn snížil pH slané vody (ze 6,5 na 3,0), čímž zvýšil její kyselost a začalo rozpuštění některých okolních hornin hlavně uhličitanů, které slouží jako „zátky“ v horninách. Celý proces je ale energeticky dost náročný a nelze vyloučit, že by mohl ohrozit spodní vody, proti čemuž se staví hlavně hnutí Greenpeace. Značnou nevýhodou je zde i fakt, že úložiště plynu se obvykle nachází daleko od samotného zdroje plynu, čímž narůstají náklady na transportování plynu a to převážně v kapalném stavu. Další možností je ukládání oxidu uhličitého do podmoří.
ských vrtů tak, aby se nedostal jak do vody, tak do atmosféry. Jedná se zde vlastně o injektáž komprimovaného nebo i kapalného oxidu uhličitého do mořského dna, do hloubky asi 2 000–3 000 m, kde je již dostatečný tlak k udržení kapalného plynu u dna a kde by také zůstal uložen až do svého dalšího možného využití. Hnutí Greenpeace to ale považuje za nápad šílený, protože při možném úniku by tento plyn zahubil podmořský život.“ (Kizlink 2007)

Existuje řada dobrých důvodů k upřesnění až přepracování SEK. K tomu je de facto prvním krokem, že vláda ve svém zasedání dne 24. XI. 2007 na doporučení ministerstva zahraničí a Bezpečnostní rady státu rozhodla o zřízení nezávislé komise pro posouzení energetických potřeb v dlouhodobém horizontu. Předsedou této komise byl vládou schválen předseda Akademie věd prof. Pačes, s tím, že komise by měla komunikovat průřezově politickým spektrum otázky, které přesahují mandát této vlády. 15 Termínově však přepracování SEK nebylo specifikováno.

Na nové SEK bude záviset predikční výdatnost úvah o dalším vývoji regionu Severočeské hněduhelné pánve a budoucí praktická využitelnost projektů rozvoje tohoto regionu. Řada problémů, které přitom bude nutno analyzovat, diskutovat a navrhnout řešení v rovině administrativní a legislativní bude přitom vyžadovat čistě politické rozhodnutí.

8.3.4 K problematice tzv. prolomení ekologických limitů těžby

Pozornosti sdělovacích medií se od r. 2005 těší vyslovovaný nesouhlas se zrušením limitů ze strany obyvatel nejohroženějších obcí – Horního Jiřetína a Černic. Ukazuje se však, že část dnešního obyvatelstva zmíněných obcí by zřejmě byla ochotna, a to za předpokladu adekvátních finančních kompenzací, své současné bydliště opustit (viz: Právo, 4. 4. 2006).

Podle společného prohlášení předsedy vlády ČR a ministra průmyslu a obchodu, publikovaného 4. ledna 2006, vláda zatím nebude jednat o zrušení usnesení vlády č. 444/1991 a bude respektovat stanovisko zastupitelstva Ústeckého kraje, které vyjde z veřejného projednávání návrhu územního plánu kraje. „Vláda bude toto stanovisko respektovat. Projde-li zákonodárným procesem návrh zákona o krajském referendu, bude se o této otázce rozhodovat přímo v referendu.“ V listopadu 2005 předložil krajský úřad k veřejné diskusi „Územní plán velkého územního celku Ústeckého kraje (ÚP VÚC ÚK) – koncept řešení“ [6]. Tato dokumentace uvažuje další vývoj těžby hnědého uhlí v regionu ve dvou variantách:
1/ Budou i nadále respektovány ekologické limity. Lom ČSA (Severočeské doly, a.s.) ukončí těžbu v r. 2017, lom Bílina (Mostecká uhelná a.s.) v r. 2035.

Environmentální hlediska prolomení limitů

Vzhledem k tomu, že i při alternativní prolomení limitů se nepředpokládá proti současnýmu stavu ani zvýšení těžby ani pokles kvality těžené substance, neměl by nad současnou úroveň stoupnout objem exhalací spojených s těžbou (tzv. zápary, samovznícení těžené substance). Návazně na tom by se neměl ani zvyšovat objem exhalací z elektráren a tepláren spalujících hnědé uhlí, ovšem za podmínky, že rekonstrukce, resp. generální opravy stávajících, fyzicky dožívajících kapacit, nezhorší jejich účinnost.

„Prolomení“ limitů se ale projeví pokračující devastací krajiny z titulu jak přesunů skrývky nadloží, tak i těžby uhelné substance, vznikem ploch půdních jam a vnějších výsypek. V neposlední řadě, další masivní spalování existujících zásob hnědého uhlí urychlí a zintenzivní proces již v současnosti závažně dopadajících klimatických extrémů.

Sociální problematika prolomení limitů

Jedním z běžně frekventovaných argumentů pro „prolomení“ limitů je, že podmínění zvýšení počtu pracovních míst a snížení nezaměstnanosti v regionu. Ten to argument je však diskutabilní: v reálu nedojde k navýšení těžby, „pouze“ dojde k jejímu přemístění, tzn. nelze očekávat výrazný nárůst pracovních míst a bylo by korrektní hovořit spíše o udržení zaměstnanosti.

Případně vytvořené nové pracovní přiležitosti budou převážně dělnického charakteru, na která je dnes, při stávajícím systému sociálního zajištění, obtížné získávat domácí pracovní sílu a v mnoha případech jiná než zahraniční pracovní síla není k dispozici. Pokud by pak dlouhodobě těžba hnědého uhlí v ČR v souladu s předpoklady Státní energetické koncepce stagnovala, lze jejměna po r.
2020 očekávat pokles zaměstnanosti. Tuto tendenci by mohla sice kompenzovat možná vyšší pracnost těžby z titulu vstupu do obtížnějších těžebních podmínek. To by se zřejmě odrazilo na ceně těženého uhlí a diskutabilní může být vliv na poptávku.

Přesídlení obyvatel z obcí, které měly ustoupit těžbě

Velmi politicky a sociologicky citlivá téma představuje, jakým způsobem (po stupem) zajistit nové byty pro obyvatele obcí, které budou muset ustoupit porubní frontě, jakým postupem bude provedeno finanční vypořádání soukromého majetku, který bude v souvislosti s postupem porubní fronty likvidován. Přitom je zřejmé, že nepřichází v úvahu přímo podmínek v období tzv. reálného socialismu: nadekretování přestěhování do sídlištních „paneláků“.

V Mostecké uhelné společnosti, což je a. s. bez účasti státu, byl ustaven tým psychologicky proškolených vyjednavačů, kteří mají za úkol jednat s obyvateli inkriminovaných obcí. Aby mohla těžba na lomu ČSA pokračovat, musela by se obec Černice vystěhovat do konce r. 2011, Horní Jířetín do r. 2015. Lidé v těchto obcích dostal od MUS oficiální nabídku, na jejímž základě by každý, kdo bude souhlasit s odchodem z obce, dostal 1,4-násobek odhadné ceny jejich stávající nemovitost, plus další miliion až 1,5 milionu. Podle MUS její vyjednavači zjistili, že většina z obyvatel Horního Jířetína a Černice je ochotno se o nabídku bavit.

MUS koncem února 2007 vyzvala zastupitele Horního Jířetína k jednání o podmínkách výkupu staveb a pozemků, ti to však odmítli.

16. Apriori stanovisko zastupitelů Horního Jířetína nejednact bez MUS nechtějí akceptovat odboráři – zaměstnanci MUS, z územní odborové organizace Ervěnice, důl ČSA, kteří dovo-
zuji, že v případě, že nebudou prolomeny limity „bude mít toto rozhodnutí poměrně zásadně vliv na celý region, nejen na těžební společnost“ (J. Franta)17. Následně vyzvali k jednání i starostu Litvínova, jehož zastupitelstvo se k otázce pokračování těžby staví rovněž negativně.

V místech, kde chtějí prolomit limity Severočeské doly (a. s. její akcie vlastní ČEZ, jehož prostřednictvím lze uplatňovat vliv státu), nejsou osídlená území. Těžba by se ale přibližila k městu Lom, jehož obyvatelé se obávají hluku, prachu a znehodnocení nemovitostí. Přesto SD mají větší naději než MUS, že se jim dohoda se všemi zainteresovaným subjekty v regionu zdaří. „Z politického hlediska tam je ale větší háček. SD patří energetické společnosti ČEZ. Ať už na území za limity jsou lesy, rokle, skládky nebo vesnice, asi není zrovna politicky košer, aby koaliční dohodu prolamovala zrovna státní firma.“18

Praxe přesídlování ve starých spolkových zemích Německa

Dle našeho názoru bylo by inspirativní seznámit se nezaujaté s metodami, kterými se řeší problematika spojená s postupem hnedouhelných lomů na území SRN. 19 Je sice pravdou, že na území v současných hraničích SRN výrazně za posledních necelých 20 let klesla těžba hnedého uhlí: z 411 Mt dosažených v r. 1989 na cca 180 Mt.20 Na druhé straně je však skutečnost, že na území starých spolkových zemích je jednou v provozu hnedouhelné lomy, kde těžba je a nebo bude srovnatelná s těžbou v ČR (těžba hnedého uhlí v celé ČR činila v r. 2006 celkem 48,5 Mt.). Přitom lze tvrdit, že problematika přesídlování (vysídlování) inkriminovaných obcí není ve starých spolkových zemích ve středu pozornosti medií i „zelených“, kteří jsou soustředěni na jinou problematiku (např. toxické odpady, hluk, jaderná energetika, genetická manipulace s rostlinami a zvířaty).

Podtrhujeme, že přesídlování obyvatelstva bylo v České republice známá společnost RWE Power, kde lze zaznamenat medializované spory, související s rozvojem těžby hnedého uhlí ve velkomolu Cottbus-Nord a v oblasti Halle – Lipsko, kde přesídlování obyvatelstva bylo v časech NDR řešeno obecně jako u nás - přestěhování do sídlištních „paneláků“.

Jak uvádí21 v okolí Kolína nad Rýnem se obce kvůli postupu těžby uhlí přesídlovaly již od třicátých let 20. století. Jen v Rýnském hnedouhelném revíru, kde těží i v ČR známá společnost RWE Power, bylo od druhé poloviny minulého století

17 „Víme, kde žijeme“, Ročník 2007, č. 2 (23. 5. 2007), vydavatel MUS, příloha k deníkům vyd. Bohemia
18 Bautzová L.: Ekonom, 2007, č. 11, s. 58 - 59
19 Pro Německo je výhodnější uhlí dovozovat. Přesto však zůstává spolu s USA na prvním místě ve světě v těžbě hnedého uhlí i v jeho spotřebě. Čtyři ložiska mezi Kolínem nad Rýnem, v Helsmestedu, v oblasti Halle-Lipsko a Dolní Lužici jsou dostatečně bohatá.
20 K tomu viz např. Der Fischer Weltalmanach 2005, s. 646 a další
přesídleno téměř 50 obcí včetně několika malých osad a samot. Své bydliště tu změnilo celkem 33 000 obyvatel.

RWE Power hodlá v nejbližších letech přestěhovat přes 2 000 obyvatel v okolí svých uhelných lomů. Přesídlení mají naplánované až do roku 2021. „V Porýní společnost RWE pro přesídlené obyvatele staví nové a poměrně luxusní domy. Cena těchto domů je však mnohem vyšší, než cena původních nemovitostí přesídlenců. Aby se lidé mohli do nové vesnice přestěhovat, musí proto těžební společnosti připlatit. Pokud na to nemají, dostanou peníze v hotovosti, které stačí na zakoupení bytu, ale nikoliv nového domu.“

V tomto momentu vidíme „zárodek“ sociálních sporů (konfliktů), které však nebudou mít plošný (resp. skupinový) charakter. Jejich dimenze a průběh bude individuální, “ad hoc“, stejně jako jsou individuální sociální statuty jejich protagonistů.

9 Literatura

CAJZ, V. ED. (1996): České středohoří-geologická a přírodovědná mapa 1:100 000. Český geologický ústav, Praha, 147 s.

FANTYŠ M., VELEBA J., ZÁHORKA J.: Východiska ze situace zmenšování rozměrů českého zemědělství. 27 s. Česká zemědělská agrární komora ČR, Praha 2007

FARSKÝ M., MILOTA J., ZAHÁLKÁ J. (1992): Tradiční průmyslové regiony v kontextu teorie a metodologie prostorové ekonomiky. Ústí n/L, SEÚ ČSAV

FARSKÝ M., MILOTA J., ZAHÁLKÁ J. (1992): Tradiční průmyslové regiony v kontextu teorie a metodologie prostorové ekonomiky. Ústí n/L, SEÚ ČSAV

FARSKÝ, I (2005): Geografická charakteristika sledovaného prostoru Chomutov, Most, Teplice a Ústí n. L. Interní zpráva pro projekt č.1J O56/05-DP 2, UJEP Ústí n. L.

FERKL J: Lesy v Chomutovsko – ústecké oblasti, Studie, 6 s., Lesy ČR Teplice, 2007

ILLNER M. a kol. (1989): Regionální problémy rozvoje ČSSR. Empirická studie. Praha, Ústav pro filosofii a sociologii CSAV

JANEČEK M.: Ochrana zemědělské půdy před erozí. ISV Nakladatelství, 201 s. Praha 2002

JUREČKA V. (2005) : Problémové regiony a vliv medií. Hospodářské noviny, 29. 7. , s. 9

JUREČKA V. (2005) : Problémové regiony a vliv medií. Hospodářské noviny, 29. 7., s. 9

JUST T. A KOL., Vodohospodářské revitalizace a jejich uplatnění v ochraně před povodněmi, 3. ZO ČSOP Hořovicko, AOPK ČR, Praha 2005

KOLEKTIV: Strategie ochrany biologické rozmanitosti ČR. MŽP ČR 2005

KOLEKTIV: Strategie rozvoje zemědělství a venkova Ústeckého kraje, 2006

KOLEKTIV: Trvale udržitelný rozvoj České krajiny. Sborník konference ČSKI, SSSI Pardubice 2002

KOLEKTIV: Zemědělství v severních Čechách. 13 s. Interní zpráva Krajská agrologická komora, Most 2006

MATOUŠKOVÁ Z. a kol.: Úvod do prostorové ekonomiky. Praha, VŠE1992

http://www.mpo.cz/dokument34335.html

NERUDA M., VRÁBLÍKOVÁ J. (2007) Možnosti využití zahraničních zkušeností z mezinárodních projektů s revitalizační tematikou, Studia oecologica, č. 2, Fakulta životního prostředí UJEP Ústí n. L., s. 98-102

PENK, J.: Studie uplatnění agroenvironmentálních opatření v Chomutovsko – ústecké oblasti. 60 s. AOPK ČR Praha 2006

PŘIBYL, J. (1986 ed.): Fyzicko-geografické hodnocení krajiny Teplicka, Část I, II. Geografický ústav ČSAV, 161 s. a mapové přílohy

Regionální rozdíly v demografickém, sociálním a ekonomickém vývoji Ústeckého kraje

Ročenka životního prostředí Ústeckého kraje 2005. Ústí nad Labem: KÚ Ústí nad Labem, 2006

Ročenka životního prostředí Ústeckého kraje 2005. Ústí nad Labem: KÚ Ústí nad Labem, 2006

Sčítání lidu, domů a bytů 1980, ČSÚ Praha

Sčítání lidu, domů a bytů 1991. ČSÚ Praha

Sčítání lidu, domů a bytů 2001. ČSÚ Praha

SEJÁK, J., ZAVÍRAL, J. 2007. Institucionální a systémové podmínky udržitelnosti českého zemědělství v období přechodu k tržnímu systému. Studia oecologica, č. 3, Fakulta životního prostředí UJEP Ústí n. L., s. 5-17. ISSN 1802-212X.
SINE: Databáze mapového registru Česká geologická služba Geofond. Praha 2007

SINE: Komplexní geologicko-ekologický výzkum severočeské hnědouhelné pánve a přilehlé části Krušných hor. ČGÚ Praha 1995

Statistická ročenka České republiky, Český statistický úřad, Praha 2004

Statistická ročenka Ústeckého kraje, Ústí nad Labem 2006

Statistická ročenka životního prostředí ČR 2000. MŽP ČR Praha, s. 541 ISBN 80-7211-1472

VOSTOUPAL B. A KOL.:Možnosti použití bioalginátových prostředků, 43 s., studie zpracována pro UJEP, České Budějovice, 2007

VOSTOUPAL, B. A KOL.: Metodická studie o možnostech použití bioalginátových přípravků, 8 s., České Budějovice, 2007

WEBER, A. O lokalizaci průmyslu. Čistá teorie lokalizace, 1909
Název: REVITALIZACE ANTROPOGENNĚ POSTIŽENÉ KRAJINY
PODKRUŠNOHOŘÍ

I. část Přírodní a sociálně ekonomické charakteristiky disparit průmyslové krajiny v Podkrušnohoří

Vědecký redaktor: prof. RNDr. Olga Kontrišová, CSc.

Vydavatel: Univerzita J. E. Purkyně v Ústí nad Labem, Fakulta životního prostředí

Vydání: první

Náklad: 200 ks

Rozsah stran: 182 s.

Tisk: MINO, Ústí nad Labem